Skip to main content

Advertisement

Log in

Differences in tissue oxygenation and changes in total hemoglobin signal strength in the brain, liver, and lower-limb muscle during hemodialysis

  • Original Article
  • Artificial Kidney / Dialysis
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Near-infrared spectroscopy has been used to measure regional saturation of oxygen (rSO2) based on the total hemoglobin (t-Hb) signal strength. To date, few studies have investigated the changes of systemic oxygenation and t-Hb signal strength during hemodialysis (HD). This study aimed to (1) monitor rSO2 and t-Hb signal strength in the brain, liver, and lower-limb muscle during HD and (2) clarify the differences in rSO2 and t-Hb signal strength in each compartment. Fifty-three patients receiving 4-h HD were included and divided into three groups according to the compartments in which tissue oxygenation was measured as follows: brain (n = 44), liver (n = 42), and lower-limb muscle (n = 40). The rSO2 and t-Hb signal strength was monitored using an INVOS 5100c (Covidien Japan, Tokyo, Japan). The rSO2 levels were significantly lower in the brain than in the liver from HD initiation to the end (HD initiation: rSO2 in the brain and liver, 46.5 ± 1.3 and 52.4 ± 1.7%, respectively, p = 0.031). Furthermore, compared to the t-Hb signal strength ratio [value at t (min) during HD/initial value before HD] in the brain during HD, there were significant increases in the liver and lower-limb muscle, respectively. In conclusion, deterioration of cerebral oxygenation was remarkable compared to the hepatic oxygenation in HD patients. Our results, which revealed significant differences among the t-Hb signal strength ratios in the brain, liver, and lower-limb muscle during HD, might reflect the non-uniform body-fluid reduction within systemic tissues induced by ultrafiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tobias JD. Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Rev Med Devices. 2006;3:235–43.

    Article  PubMed  Google Scholar 

  2. Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.

    Article  PubMed  Google Scholar 

  3. Parnia S, Nasir A, Ahn A, Malik H, Yang J, Zhu J, Dorazi F, Richman P. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2014;42:930–3.

    Article  PubMed  Google Scholar 

  4. Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, Brown C, Katz NM, Grams ME, Hogue CW. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med. 2013;41:464–71.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McCusker K, Chalafant A, de Foe G, Gunaydin S, Vijay V. Influence of hematocrit and pump prime on cerebral oxygen saturation in on-pump coronary revascularization. Perfusion. 2006;21:149–55.

    Article  PubMed  Google Scholar 

  6. Calderon-Arnulphi M, Alaraj A, Amin-Hanjani S, Mantulin WW, Polzonetti CM, Gratton E, Charbel FT. Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J Neurosurg. 2007;106:283–90.

    Article  CAS  PubMed  Google Scholar 

  7. Boezeman RP, Kelder JC, Waanders FG, Moll FL, de Vries JP. In vivo measurements of regional hemoglobin oxygen saturation values and limb-to-arm ratios of near-infrared spectroscopy for tissue oxygenation monitoring of lower extremities in healthy subjects. Med Devices (Auckl). 2014;8:31–6.

    Google Scholar 

  8. Shuller MS, Reisman WM, Kinsey TL, Whitesides TE Jr, Hammerberg EM, Davila MG, Moore TJ. Correlation between muscle oxygenation and compartment pressures in acute compartment syndrome of the leg. J Bone Joint Surg Am. 2010;92:863–70.

    Article  Google Scholar 

  9. Watkins DJ, Besner GE. The role of the intestinal microcirculation in necrotizing enterocolitis. Semin Pediatr Surg. 2013;22:83–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schat TE, Schurink M, van der Laan ME, Hulscher JBF, Hulzebos CV, Bos AF, Kooi EM. Near-infrared spectroscopy to predict the course of necrotizing enterocolitis. PLoS One. 2016;11:e0154710. doi:10.1371/journal.pone.0154710.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ito K, Ookawara S, Ueda Y, Goto S, Miyazawa H, Yamada H, Kitano T, Shindo M, Kaku Y, Hirai K, Yoshida M, Hoshino T, Nabata A, Mori H, Yoshida I, Kakei M, Tabei K. Factors affecting cerebral oxygenation in hemodialysis patients: cerebral oxygenation associates with pH, hemodialysis duration, serum albumin concentration, and diabetes mellitus. PLoS One. 2015;10:e0117474. doi:10.1371/journal.pone.0117474.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miyazawa H, Ookawara S, Ito K, Yanai K, Ishii H, Kitano T, Shindo M, Ueda Y, Kaku Y, Hirai K, Hoshino T, Tabei K, Morishita Y. Factors associating with oxygenation of lower-limb muscle tissue in hemodialysis patients. World J Nephrol. 2016;5:524–30. doi:10.5527/wjn.v5.i6.524.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Myers D, McGraw M, George M, Mulier K, Beilman G. Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. Crit Care. 2009;13(suppl 5):S2. doi:10.1186/cc8000.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ueda S, Nakamiya N, Matsuura K, Shigekawa T, Sano H, Hirokawa E, Shimada H, Suzuki H, Oda M, Yamashita Y, Kishino O, Kuji I, Osaki A, Saeki T. Optical imaging of tumor vascularity associated with proliferation and glucose metabolism in early breast cancer: clinical application of total hemoglobin measurements in the breast. BMC Cancer. 2013;13:514. doi:10.1186/1471-2407-13-514.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nielsen AL, Thunedborg P, Brinkenfeldt H, Hegbrant J, Jensen HA, Wandrup JH. Assessment of pH and oxygen status during hemodialysis using the arterial blood line in patients with an arteriovenous fistula. Blood Purif. 1999;17:206–12.

    Article  CAS  PubMed  Google Scholar 

  16. Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.

    CAS  PubMed  Google Scholar 

  17. Yoshida I, Ando K, Ando Y, Ookawara S, Suzuki M, Furuya H, Iimura O, Takeda D, Kajiya M, Komada T, Mori H, Tabei K, BVM study Group. A new device to monitor blood volume in hemodialysis patients. Ther Apher Dial. 2010;14:560–5.

    Article  PubMed  Google Scholar 

  18. Lemmers PMA, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 2008;121:142–7.

    Article  PubMed  Google Scholar 

  19. Hyttel-Sorensen S, Sorensen LC, Riera J, Greisen G. Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm. Biomed Opt Express. 2011;2:3047–57.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmitz J, Pichler G, Schwaberger B, Urlesberger B, Baik N, Binder C. Feasibility of long-term cerebral and peripheral regional tissue oxygen saturation measurements. Physiol Meas. 2014;35:1349–55.

    Article  CAS  PubMed  Google Scholar 

  21. Hongo K, Kobayashi S, Okudera H, Hokama M, Nakagawa F. Noninvasive cerebral optical spectroscopy: depth-resolved measurements of cerebral haemodynamics using indocyanine green. Neuro Res. 1995;17:89–93.

    Article  CAS  Google Scholar 

  22. Maslehaty H, Krause-Tilz U, Petridis AK, Barth H, Mehdorn HM. Continuous measurement of cerebral oxygenation with near-infrared spectroscopy after spontaneous subarachnoid hemorrhage. ISRN Neurol 2012;907187. doi:10.5402/2012/907187.

  23. Ookawara S, Suzuki M, Yahagi T, Saitou M, Tabei K. Effect of postural change on blood volume in long-term hemodialysis patients. Nephron. 2001;87:27–34.

    Article  CAS  PubMed  Google Scholar 

  24. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Apply Physiol. 1994;77:2740–7.

    Article  CAS  Google Scholar 

  25. Song JG, Jeon SM, Shin WJ, Jun IG, Shin K, Huh IY, Kim YK, Hwang GS. Laboratory variables associated with low near-infrared cerebral oxygen saturation in icteric patients before liver transplantation surgery. Anesth Analg. 2011;112:1347–52.

    Article  CAS  PubMed  Google Scholar 

  26. Goto M, Kawano S, Yoshihara H, Takei Y, Hijioka T, Fukui H, Matsunaga T, Oshita M, Kashiwagi T, Fusamoto H. Hepatic tissue oxygenation as a predictive indicator of ischemia-reperfusion liver injury. Hepatology. 1992;15:432–7.

    Article  CAS  PubMed  Google Scholar 

  27. El-Desoky AE, Jiao LR, Havlik R, Habib N, Davidson BR, Seifalian AM. Measurement of hepatic tissue hypoxia using near infrared spectroscopy: comparison with hepatic vein oxygen partial pressure. Eur Surn Res. 2000;32:207–14.

    Article  CAS  Google Scholar 

  28. Saad WEA. Nonocclusive hepatic artery hypoperfusion syndrome (splenic steal syndrome) in liver transplant recipients. Semin Intervent Radiol. 2012;29:140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bailey SM, Hendrics-Munoz KD, Mally P. Splanchnic-cerebral oxygenation ratio as a marker of preterm infant blood transfusion needs. Transfusion. 2012;52:252–60.

    Article  CAS  PubMed  Google Scholar 

  30. Bailey SM, Hendrics-Munoz KD, Mally P. Splanchnic-cerebral oxygenation ratio (SCOR) values in healthy term infants as measured by near-infrared spectroscopy. Pediatr Surg Int. 2013;29:591–5.

    Article  PubMed  Google Scholar 

  31. Dantsker DR. The gastrointestinal tract: the canary of the body? JAMA. 1993;270:1247–8.

    Article  Google Scholar 

  32. Taylor J, Mulier K, Myers D, Beilman GJ. Use of infrared spectroscopy in early determination of irreversible hemorrhagic shock. J Trauma. 2005;58:119–1125.

    Article  Google Scholar 

  33. Daugirdas JT. Pathophysiology of dialysis hypotension: an update. Am J Kidney Dis. 2001;38:S11–7.

    Article  CAS  PubMed  Google Scholar 

  34. Dasselaar JJ, van der Sande FM, Franssen CFM. Critical evaluation of blood volume measurements during hemodialysis. Blood Purif. 2012;33:177–82.

    Article  PubMed  Google Scholar 

  35. Ishida I, Hirakata H, Sugimori H, Omae T, Hirakata E, Ibayashi S, Kubo M, Fujisawa M. Hemodialysis causes severe orthostatic reduction in cerebral blood flow velocity in diabetic patients. Am J Kidney Dis. 1999;34:1096–104.

    Article  CAS  PubMed  Google Scholar 

  36. Mizumasa T, Hirakata H, Yoshimitsu T, Hirakata E, Kubo M, Kashiwagi M, Tanaka H, Kanai H, Fujimi S, Iida M. Dialysis-related hypotension as a cause for progressive frontal lobe atrophy in chronic hemodialysis patients: a 3-year prospective study. Nephron Clin Pract. 2004;97:c23–30.

    Article  PubMed  Google Scholar 

  37. Miyazawa H, Ookawara S, Tabei K. Aggravation of cerebral oxygenation due to intradialytic hypotension induced by blood volume reduction during hemodialysis: a case report. Ther Apher Dial. 2015;19:525–7.

    Article  PubMed  Google Scholar 

  38. Sachdev PS, Brodaty H, Valenzuela MJ, Lorentz L, Looi JC, Wen W, Zagami AS. The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients. Neurology. 2004;62:912–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study participants and our hospital’s clinical dialysis center staff.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susumu Ookawara or Kiyonori Ito.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ookawara, S., Ito, K., Ueda, Y. et al. Differences in tissue oxygenation and changes in total hemoglobin signal strength in the brain, liver, and lower-limb muscle during hemodialysis. J Artif Organs 21, 86–93 (2018). https://doi.org/10.1007/s10047-017-0978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-017-0978-1

Keywords

Navigation