Pattern Analysis and Applications

, Volume 21, Issue 1, pp 19–34 | Cite as

Partial fingerprint identification for large databases

Original Article

Abstract

Nowadays, most fingerprint sensors capture partial fingerprint images. Incomplete, fragmentary, or partial fingerprint identification in large databases is an attractive research topic and is remained as an important and challenging problem. Accordingly, conventional fingerprint identification systems are not capable of providing convincing results. To overcome this problem, we need a fast and accurate identification strategy. In this context, fingerprint indexing is commonly used to speed up the identification process. This paper proposes a robust and fast identification system that combines two indexing algorithms. One of the indexing algorithms uses minutiae triplets, and the other uses orientation field (OF) to index and retrieve fingerprints. Furthermore, the proposal uses some partial fingerprint matching methods on final candidate list obtained from the indexing stage. The proposal is evaluated over two national institutes of standards and technology (NIST) datasets and four fingerprint verification competition (FVC) datasets leading to low identification times with no accuracy loss.

Keywords

Partial fingerprint identification Fingerprint indexing Large databases Minutiae Orientation field Ellipse 

Notes

Acknowledgements

The authors are indebted to the editor and the anonymous reviewers whose comments and suggestions helped us to improve the quality of the paper.

References

  1. 1.
    Agrawall P, Kapoor R, Agrawal S (2014) A hybrid partial fingerprint matching algorithm for estimation of equal error rate. In: Proceedings of the international conference on advanced communication control and computing technologies (ICACCCT’14) Ramanathapuram, India.  https://doi.org/10.1109/ICACCCT.2014.7019308
  2. 2.
    Alonso-Fernandez F, Fierrez J, Ortega-Garcia J, Gonzalez-Rodriguez J, Fronthaler H, Kollreider K, Bigun J (2007) A comparative study of fingerprint image-quality estimation methods. IEEE Trans Inf Forensics Secur 2(4):734–743CrossRefGoogle Scholar
  3. 3.
    Aravindan A, Anzar SM (2017) Robust partial fingerprint recognition using wavelet SIFT descriptors. Pattern Anal Appl.  https://doi.org/10.1007/s10044-017-0615-x
  4. 4.
    Cappelli R (2011) Fast and accurate fingerprint indexing based on ridge orientation and frequency. IEEE Trans Syst Man Cybern 41(6):1511–1521CrossRefGoogle Scholar
  5. 5.
    Cappelli R, Ferrara M, Maltoni D (2010) Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 32(12):2128–2141CrossRefGoogle Scholar
  6. 6.
    Cappelli R, Ferrara M, Maltoni D (2011) Fingerprint indexing based on minutia cylinder-code. IEEE Trans Pattern Anal Mach Intell 33(5):1051–1057CrossRefGoogle Scholar
  7. 7.
    Cappelli R, Ferrara M, Maio D (2011) Candidate list reduction based on the analysis of fingerprint indexing scores. IEEE Trans Inf Forensics Secur 6(3):1160–1164CrossRefGoogle Scholar
  8. 8.
    Choi H, Choi K, Kim J (2011) Fingerprint matching incorporating ridge features with minutiae. IEEE Trans Inf Forensics Secur 6(2):338–345CrossRefGoogle Scholar
  9. 9.
    Cordeiro de Amorim R, Shestakov A, Mirkin B, Makarenkov V (2017) The Minkowski central partition as a pointer to a suitable distance exponent and consensus partitioning. Pattern Recognit 67:62–72CrossRefGoogle Scholar
  10. 10.
    Deblonde A, Morpoho S (2014) Fingerprint indexing through sparse decomposition of ridge flow patches. In: Proceedings of the IEEE symposium on computational intelligence in biometrics and identity management (CIBIM’14) Orlando, USA.  https://doi.org/10.1109/CIBIM.2014.7015464
  11. 11.
    Fahmy MF, Thabet MA (2013) A fingerprint segmentation technique based on morphological processing. In: Proceedings of the IEEE international symposium on signal processing and information technology (ISSPIT’13) Athens, Greece, pp 000215–000220Google Scholar
  12. 12.
    FVC2000: The first fingerprint verification competition. http://bias.csr.unibo.it/fvc2000. Accessed 14 Nov 2016
  13. 13.
    FVC2002: The second fingerprint verification competition. http://bias.csr.unibo.it/fvc2002. Accessed 14 Nov 2016
  14. 14.
    FVC2004: The third international fingerprint verification competition, http://bias.csr.unibo.it/fvc2004. Accessed 14 Nov 2016
  15. 15.
    FVC2006: The fourth international fingerprint verification competition, http://bias.csr.unibo.it/fvc2006. Accessed 14 Nov 2016
  16. 16.
    Gago-Alonso A, Hernández-Palancar J, Rodríguez-Reina E, Muñoz-Briseño A (2013) Indexing and retrieving in fingerprint databases under structural distortions. Expert Syst Appl 40(8):2858–2871CrossRefGoogle Scholar
  17. 17.
    Girgis MR, Sewisy AA, Mansour RF (2009) A robust method for partial deformed fingerprints verification using genetic algorithm. Expert Syst Appl 36(2):2008–2016CrossRefGoogle Scholar
  18. 18.
    Jea TY, Govindaraju V (2005) A minutia-based partial fingerprint recognition system. Pattern Recognit 38(10):1672–1684CrossRefGoogle Scholar
  19. 19.
    Khodadoust J, Khodadoust AM (2017) Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recognit 67:110–126CrossRefGoogle Scholar
  20. 20.
    Khodadoust J, Khodadoust AM (2017) Fingerprint indexing based on expanded Delaunay triangulation. Expert Syst Appl 81:251–267CrossRefGoogle Scholar
  21. 21.
    Krish RP, Fierrez J, Ramos D, Ortega-Garcia J, Bigun J (2014) Partial fingerprint registration for forensics using minutiae-generated orientation fields. In: Proceedings of the 2nd international workshop on biometrics and forensics (IWBF’14) Valletta, Malta.  https://doi.org/10.1109/IWBF.2014.6914241
  22. 22.
    Lee W, Cho S, Choi H, Kim J (2017) Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners. Expert Syst Appl 87:183–198CrossRefGoogle Scholar
  23. 23.
    Li G, Yang B, Busch C (2015) A fingerprint indexing scheme with robustness against sample translation and rotation. In: Proceedings of the international conference of the biometrics special interest group (BIOSIG’15) Darmstadt, Germany.  https://doi.org/10.1109/BIOSIG.2015.7314593
  24. 24.
    Li G, Yang B, Busch C (2015) A novel fingerprint indexing approach focusing on minutia location and direction. In: Proceedings of the IEEE international conference on identity, security and behavior analysis (ISBA’15) Hong Kong, China.  https://doi.org/10.1109/ISBA.2015.7126346
  25. 25.
    Maltoni D, Maio D, Jain A, Prabhakar S (2009) Handbook of fingerprint recognition, 2nd edn. Springer, New YorkCrossRefMATHGoogle Scholar
  26. 26.
    Mathur S, Vijay A, Shah J, Das S, Malla A (2016) Methodology for partial fingerprint enrollment and authentication on mobile devices. In: Proceedings of the international conference on biometrics (ICB’16), Halmstad, Sweden.  https://doi.org/10.1109/ICB.2016.7550093
  27. 27.
    Muñoz-Briseño A, Gago-Alonso A, Hernández-Palancar J (2013) Fingerprint indexing with bad quality areas. Expert Syst Appl 40(5):1839–1846CrossRefGoogle Scholar
  28. 28.
    Nadipally M, Govardhan A, Satyanarayana C (2013) Partial fingerprint matching using projection based weak descriptor. In: Proceedings of the international conference on signal processing image processing & pattern recognition (ICSIPR’13) Coimbatore, India.  https://doi.org/10.1109/ICSIPR.2013.6497996
  29. 29.
    Nanni L, Lumini A (2009) Descriptors for image-based fingerprint matchers. Expert Syst Appl 36(10):12414–12422CrossRefGoogle Scholar
  30. 30.
    NIST Biometric Image Software (NBIS): https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis. Accessed 2 Dec 2016
  31. 31.
    NIST Special Database 4: NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (FIGS), https://www.nist.gov/srd/nist-special-database-4. Accessed 2 Dec 2016
  32. 32.
    NIST Special Database 14: NIST Mated Fingerprint Card Pairs 2 (MFCP2), https://www.nist.gov/srd/nist-special-database-14. Accessed 2 Dec 2016
  33. 33.
    Oliveira GV, Coutinho FP, Campello RJGB, Naldi MC (2017) Improving k-means through distributed scalable metaheuristics. Neurocomputing 246:45–57CrossRefGoogle Scholar
  34. 34.
    OpenCV 3.3: http://opencv.org/. Accessed 4 Aug 2017
  35. 35.
    OpenMPI 2.1.1: https://www.open-mpi.org/software/ompi/v2.1/. Accessed 28 May 2017
  36. 36.
    Peralta D, Galar M, Triguero I, Miguel-Hurtado O, Benitez JM, Herrera F (2014a) Minutiae filtering to improve both efficacy and efficiency of fingerprint matching algorithms. Eng Appl Artif Intell 32:37–53CrossRefGoogle Scholar
  37. 37.
    Peralta D, García S, Benitez JM, Herrera F (2017) Minutiae-based fingerprint matching decomposition: methodology for big data frameworks. Inf Sci 408:198–212CrossRefGoogle Scholar
  38. 38.
    Peralta D, Triguero I, García S, Saeys Y, Benitez JM, Herrera F (2017) Distributed incremental fingerprint identification with reduced database penetration rate using a hierarchical classification based on feature fusion and selection. Knowl Based Syst 126:91–103CrossRefGoogle Scholar
  39. 39.
    Peralta D, Triguero I, Sanchez-Reillo R, Herrera F, Benitez JM (2014) Fast fingerprint identification for large databases. Pattern Recognit 47(2):588–602CrossRefGoogle Scholar
  40. 40.
    Su Y, Feng J, Zhou J (2016) Fingerprint indexing with pose constraint. Pattern Recognit 54:1–13CrossRefGoogle Scholar
  41. 41.
    Sutthiwichaiporn P, Areekul V (2013) Adaptive boosted spectral filtering for progressive fingerprint enhancement. Pattern Recognit 46(9):2465–2486CrossRefGoogle Scholar
  42. 42.
    Wang Y, Hu J (2011) Global ridge orientation modeling for partial fingerprint identification. IEEE Trans Pattern Anal Mach Intell 33(1):72–87CrossRefGoogle Scholar
  43. 43.
    Wang Y, Hu J, Phillips D (2007) A fingerprint orientation model based on 2d fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing. IEEE Trans Pattern Anal Mach Intell 29(4):573–585CrossRefGoogle Scholar
  44. 44.
    Wang Y, Wang L, Cheung YM, Yuen PC (2015) Learning compact binary codes for hash-based fingerprint indexing. IEEE Trans Inf Forensics Secur 10(8):1603–1616CrossRefGoogle Scholar
  45. 45.
    Zanganeh O, Srinivasan B, Bhattacharjee N (2014) Partial fingerprint matching through region-based similarity. In: Proceedings of the international conference on digital image computing: techniques and applications (DlCTA’14) Wollongong, Australia.  https://doi.org/10.1109/DICTA.2014.7008121
  46. 46.
    Zhang J, Jing XJ, Chen N, Wang JL (2013) Incomplete fingerprint recognition based on feature fusion and pattern entropy. J China Univ Posts Telecommun 20(3):121–128CrossRefGoogle Scholar
  47. 47.
    Zhao F, Tang X (2007) Preprocessing and postprocessing for skeleton-based fingerprint minutiae extraction. Pattern Recognit 40(4):1270–1281CrossRefMATHGoogle Scholar
  48. 48.
    Zhou W, Hu J, Wang S, Petersen I, Bennamoun M (2015) Partial fingerprint indexing: a combination of local and reconstructed global features. Concurr Comput Practice Exp 28(10):2940–2957CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Computer Engineering and Information TechnologyPayame Noor University (PNU)QeshmIran
  2. 2.Department of Electrical EngineeringSadjad University of TechnologyMashhadIran

Personalised recommendations