Skip to main content
Log in

Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, a photonic-crystal fiber based plasmonic biosensor in which gold is used as the plasmonic material is proposed. The introduced sensor is designed in such a way that the plasmonic metal layer and the sensing layer are placed outside the fiber structure so that the fabrication process and the numerical analysis has become comparatively much easier. The proposed plasmonic biosensor properties are calculated numerically using the finite element method. Amongst the parameters affecting the performance of the biosensor are the thickness of the gold layer and the diameter of the central cavity. By applying the wavelength interrogation method, the maximum sensitivity and the resolution of the proposed biosensor are computed as 5723.5 nm/RIU and 1.74 × 10−5 RIU, respectively. The proposed structure with the above properties is suitable for detecting biological molecules, organic chemicals and analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ademgil, H., Haxha, S., Gorman, T., AbdelMalek, F.: Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses. J. Lightwave Technol. 27(5), 559–567 (2009). https://doi.org/10.1109/JLT.2008.2004813

    Article  ADS  Google Scholar 

  2. Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S., Robinson, G., Oliver, J.: A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment. Photonic crystals-innovative systems, lasers and waveguides. InTech, Vienna (2012)

    Google Scholar 

  3. Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S., Robinson, G.K., Oliver, J.V.: Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48(11), 1403–1410 (2012). https://doi.org/10.1109/JQE.2012.2213803

    Article  ADS  Google Scholar 

  4. Al Mamun, M.A., Islam, M.A., Alam, M.S.: A square lattice photonic crystal fiber based surface plasmon resonance sensor with high sensitivity. In: 2014 International Conference on Electrical Engineering and Information and Communication Technology (ICEEICT). IEEE, Dhaka, 10–12 April 2014. ISBN: 978-1-4799-4820-8. https://doi.org/10.1109/ICEEICT.2014.6919108

  5. Azab, M.Y., Hameed, M.F.O., Obayya, S.: Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers. Opt. Quantum Electron. 49(2), 49 (2017). https://doi.org/10.1007/s11082-016-0849-7

    Article  Google Scholar 

  6. Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A., Obayya, S.S.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quantum Electron. 48(2), 142 (2016). https://doi.org/10.1007/s11082-016-0414-4

    Article  Google Scholar 

  7. Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26(6), 595–598 (2014). https://doi.org/10.1109/LPT.2014.2301153

    Article  ADS  Google Scholar 

  8. Dash, J.N., Jha, R.: On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5), 1123–1131 (2015)

    Article  Google Scholar 

  9. Dash, J.N., Jha, R.: Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt. Quantum Electron. 48(2), 137 (2016). https://doi.org/10.1007/s11082-016-0423-3

    Article  Google Scholar 

  10. Gao, D., Guan, C., Wen, Y., Zhong, X., Yuan, L.: Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014). https://doi.org/10.1016/j.optcom.2013.10.015

    Article  ADS  Google Scholar 

  11. Hameed, M.F.O., Alrayk, Y.K., Obayya, S.: Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photonics J. 8(3), 1–12 (2016). https://doi.org/10.1109/JPHOT.2016.2563319

    Article  Google Scholar 

  12. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors. Sens. Actuators B 54(1), 3–15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  Google Scholar 

  13. Issa, N.A., van Eijkelenborg, M.A., Fellew, M., Cox, F., Henry, G., Large, M.C.: Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29(12), 1336–1338 (2004)

    Article  ADS  Google Scholar 

  14. Liu, C., Yang, L., Su, W., Wang, F., Sun, T., Liu, Q., Mu, H., Chu, P.K.: Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017). https://doi.org/10.1016/j.optcom.2016.07.031

    Article  ADS  Google Scholar 

  15. Mohsenirad, H., Olyaee, S., Seifouri, M.: Design of a new two-dimensional optical biosensor using photonic crystal waveguides and a nanocavity. Photonics Lasers Med. 5(1), 51–56 (2016). https://doi.org/10.1515/plm-2015-0033

    Article  Google Scholar 

  16. Olyaee, S., Bahabady, A.M.: Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator.”. Optik. 126(20), 2560–2564 (2015). https://doi.org/10.1016/j.ijleo.2015.06.037

    Article  ADS  Google Scholar 

  17. Olyaee, S., Seifouri, M., Mohsenirad, H.: Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor. J. Mod. Opt. 63(13), 1274–1279 (2016). https://doi.org/10.1080/09500340.2016.1140841

    Article  ADS  Google Scholar 

  18. Otupiri, R., Akowuah, E., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefringent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6(4), 1–11 (2014). https://doi.org/10.1109/JPHOT.2014.2335716

    Article  Google Scholar 

  19. Otupiri, R., Akowuah, E.K., Haxha, S.: Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23(12), 15716–15727 (2015). https://doi.org/10.1364/OE.23.015716

    Article  ADS  Google Scholar 

  20. Rifat, A., Mahdiraji, G.A., Shee, Y., Shawon, M.J., Adikan, F.M.: A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016). https://doi.org/10.1016/j.proeng.2015.08.1107

    Article  Google Scholar 

  21. Rifat, A., Mahdiraji, G.A., Sua, Y., Shee, Y., Ahmed, R., Chow, D.M., Adikan, F.M.: Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015). https://doi.org/10.1109/LPT.2015.2432812

    Article  ADS  Google Scholar 

  22. Rifat, A.A., Ahmed, R., Mahdiraji, G.A., Adikan, F.M.: Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17(9), 2776–2783 (2017). https://doi.org/10.1109/JSEN.2017.2677473

    Article  ADS  Google Scholar 

  23. Rifat, A.A., Hasan, M.R., Ahmed, R., Butt, H.: “Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12(1), 012503 (2017)

    Article  ADS  Google Scholar 

  24. Rifat, A.A., Mahdiraji, G.A., Ahmed, R., Chow, D.M., Sua, Y., Shee, Y., Adikan, F.M.: Copper–graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8(1), 1–8 (2016). https://doi.org/10.1109/JPHOT.2015.2510632

    Article  Google Scholar 

  25. Rifat, A.A., Mahdiraji, G.A., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015). https://doi.org/10.3390/s150511499

    Article  Google Scholar 

  26. Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11(8), 843–852 (2003). https://doi.org/10.1364/OE.11.000843

    Article  ADS  Google Scholar 

  27. Sharma, A.K., Jha, R., Gupta, B.: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J. 7(8), 1118–1129 (2007). https://doi.org/10.1109/JSEN.2007.897946

    Article  ADS  Google Scholar 

  28. Sharma, R., Janyani, V., Bhatnagar, S.: Improved single mode property in elliptical air hole photonic crystal fiber. J. Mod. Opt. 58(7), 604–610 (2011)

    Article  ADS  Google Scholar 

  29. Shuai, B., Xia, L., Zhang, Y., Liu, D.: A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Optics Express 20(6), 5974–5986 (2012). https://doi.org/10.1364/OE.20.005974

    Article  ADS  Google Scholar 

  30. Yao, Y., Yi, B., Xiao, J., Li, Z.: Surface plasmon resonance biosensors and its application. In: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. IEEE, Wuhan, 6–8 July 2007. ISBN: 1-4244-1120-3. https://doi.org/10.1109/ICBBE.2007.270

  31. Yasli, A., Akowuah, E.K., Haxha, S., Ademgil, H.: Photonic crystal fiber based surface plasmon sensor design and analyze with elliptical air holes. In: HONET-ICT, 2016. IEEE, Nicosia, 13–14 Oct 2016. ISSN: 1949-4106. https://doi.org/10.1109/HONET.2016.7753423

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifouri, M., Rouini, M.A. & Olyaee, S. Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes. Opt Rev 25, 555–562 (2018). https://doi.org/10.1007/s10043-018-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0447-y

Keywords

Navigation