Skip to main content
Log in

Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry–Perot interferometric sensor consisting of fiber Bragg gratings

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A fast interrogation method using a sinusoidal modulated laser diode for a fiber Fabry–Perot interferometric sensor consisting of Bragg gratings (FBG–FPI) is proposed.. The FBG–FPI has sharp transmittance peaks in the reflection band of the FBGs. Wavelength sweep produced by current modulation of a laser diode can be used to detect the peak position. This enables high-resolution strain or temperature measurement. To precisely control the current, the current modulation is realized using a laser diode controller (LDC) with external modulation function. In the modulation by a sawtooth wave, the possible speed of wavelength sweeping is limited to 100 kHz or less due to the bandwidth limitation of an LDC and thermal effect in a laser diodeUsing a sinusoidal wave as a modulation waveform enables wavelength sweeping at speeds exceeding 100 kHz. The modulation characteristics of the laser wavelength is evaluated experimentally and the operating wavelength is monitored using an asymmetric Mach–Zehnder interferometer. The resolution of 0.2 fm/\(\sqrt{\mathrm{Hz}}\) and measurement time of 1 \(\upmu\)s were experimentally demonstrated in the present sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Grattan, L., Meggitt, B.: Optical Fiber Sensors Technology. Advanced Applications-Bragg Gratingd and Distributed Sensors. Springer, Heidelberg (2000)

    Google Scholar 

  2. Yin, S., Ruffin, P .B., Yu, F .T .S.: Fiber Optic Sensors (Optical Science and Engineering), 2nd edn. CRC Press, Boca Raton (2012)

    Google Scholar 

  3. López-Higuera, J.: Handbook of Optical Fibre Sensing technology. Wiley, New York (2002)

    Google Scholar 

  4. Caucheteur, C., Chah, K., Lhomme, F., Blondel, M., Megret, P.: Autocorrelation demodulation technique for fiber Bragg grating sensor. IEEE Photonics Technol. Lett. 16, 2320 (2004)

    Article  ADS  Google Scholar 

  5. Ricchiuti, A.L., Barrera, D., Nonaka, K., Sales, S.: Temperature gradient sensor based on a long-fiber Bragg grating and time–frequency analysis. Opt. Lett. 39, 5729 (2014)

    Article  ADS  Google Scholar 

  6. Azhari, A., Liang, R., Toyserkani, E.: A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environments. Meas. Sci. Technol. 25, 75104 (2014)

    Article  Google Scholar 

  7. Zhang, D., Wang, J., Wang, Y., Dai, X.: A fast response temperature sensor based on fiber Bragg grating. Meas. Sci. Technol. 25, 75105 (2014)

    Article  Google Scholar 

  8. de Filho, E.S.L., Baiad, M.D., Gagne, M., Kashyap, R.: Fiber Bragg gratings for low-temperature measurement. Opt. Express 22, 27681 (2014)

    Article  ADS  Google Scholar 

  9. Gonzalez-Reyna, M., Alvarado-Mendez, E., Estudillo-Ayala, J., Vargas-Rodriguez, E., Sosa-Morales, M., Sierra, J., Jauregui-Vazquez, D., Rojas-Laguna, R.: Laser temperature sensor based on a fiber Bragg grating. IEEE Photonics Technol. Lett. 27, 1141 (2015)

    Article  ADS  Google Scholar 

  10. Salazar-Serrano, L.J., Barrera, D., Amaya, W., Sales, S., Pruneri, V., Capmany, J., Torres, J.P.: Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification. Opt. Lett. 40, 3962 (2015)

    Article  ADS  Google Scholar 

  11. Kersey, A.D., Berkoff, T.A., Morey, W.W.: Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter. Opt. Lett. 18, 1370 (1993)

    Article  ADS  Google Scholar 

  12. Arie, A., Lissak, B., Tur, M., Member, S.: Static fiber-Bragg grating strain sensing using frequency-locked lasers. J. Lightwave Technol. 17, 1849 (1999)

    Article  ADS  Google Scholar 

  13. Kim, S., Lee, K., Lee, J.H., Jeong, J.-M., Lee, S.B.: Temperature-insensitive fiber Bragg grating-based bending sensor using radio-frequency-modulated reflective semiconductor optical amplifier. Jpn. J. Appl. Phys. 48, 62402 (2009)

    Article  Google Scholar 

  14. Liu, Q., Tokunaga, T., He, Z.: Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound–Drever–Hall technique. Opt. Lett. 36, 4044 (2011)

    Article  ADS  Google Scholar 

  15. Perry, M., Orr, P., Niewczas, P., Johnston, M.: Nanoscale resolution interrogation scheme for simultaneous static and dynamic fiber Bragg grating strain sensing. J. Lightwave Technol. 30, 3252 (2012)

    Article  ADS  Google Scholar 

  16. Takahashi, N., Tetsumura, K., Takahashi, S.: Underwater acoustic sensor using optical fiber Bragg grating as detecting element. Jpn. J. Appl. Phys. 38, 3233 (1999)

    Article  ADS  Google Scholar 

  17. Takahashi, N., Yoshimura, K., Takahashi, S.: Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating. Jpn. J. Appl. Phys. 39, 3134 (2000)

    Article  ADS  Google Scholar 

  18. Fujisue, T., Nakamura, K., Ueha, S.: Demodulation of acoustic signals in fiber Bragg grating ultrasonic sensors using arrayed waveguide gratings. Jpn. J. Appl. Phys. 45, 4577 (2006)

    Article  ADS  Google Scholar 

  19. Takahashi, N., Yoshimura, K., Takahashi, S.: Fiber Bragg grating vibration sensor using incoherent light. Jpn. J. Appl. Phys. 40, 3632 (2001)

    Article  ADS  Google Scholar 

  20. Tanaka, S., Ogawa, T., Thongnum, W., Takahashi, N., Takahashi, S.: Thermally stabilized fiber-Bragg-grating vibration sensor using erbium-doped fiber laser. Jpn. J. Appl. Phys. 42, 3060 (2003)

    Article  ADS  Google Scholar 

  21. Tanaka, S., Ogawa, T., Yokosuka, H., Takahashi, N.: Multiplexed fiber Bragg grating vibration sensor with temperature compensation using wavelength-switchable fiber laser. Jpn. J. Appl. Phys. 43, 2969 (2004)

    Article  ADS  Google Scholar 

  22. Tanaka, S., Yokosuka, H., Inamoto, K., Takahashi, N.: Wavelength division multiplexed fiber Bragg grating vibration sensor array with temperature compensation. Jpn. J. Appl. Phys. 45, 4588 (2006)

    Article  ADS  Google Scholar 

  23. Tanaka, S., Somatomo, H., Wada, A., Takahashi, N.: Fiber-optic mechanical vibration sensor using long-period fiber grating. Jpn. J. Appl. Phys 48, 07GE05 (2009)

    Google Scholar 

  24. Tsuda, H., Sato, E., Nakajima, T., Nakamura, H., Arakawa, T., Shiono, H., Minato, M., Kurabayashi, H., Sato, A.: Acoustic emission measurement using a strain-insensitive fiber Bragg grating sensor under varying load conditions. Opt. Lett. 34, 2942 (2009)

    Article  ADS  Google Scholar 

  25. Chen, D., Liu, W., Jiang, M., He, S.: High-resolution strain/temperature sensing system based on a high-finesse fiber cavity and time-domain wavelength demodulation. J. Lightwave Technol. 27, 2477 (2009)

    Article  ADS  Google Scholar 

  26. Wada, A., Tanaka, S., Takahashi, N.: High-sensitivity vibration sensing using in-fiber Fabry–Perot interferometer with fiber-Bragg-grating reflectors. Proc. SPIE 7503, 75033L (2009)

    Article  ADS  Google Scholar 

  27. Lam, T.T.-Y., Chow, J.H., Shaddock, D.A., Littler, I.C.M., Gagliardi, G., Gray, M.B., McClelland, D.E.: High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Appl. Opt. 49, 4029 (2010)

    Article  ADS  Google Scholar 

  28. Wada, A., Tanaka, S., Takahashi, N.: Optical Fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis. IEEE Sens. J. 12, 225 (2012)

    Article  ADS  Google Scholar 

  29. Wada, A., Tanaka, S., Takahashi, N.: Enhancement of dynamic range of optical fiber sensor using fiber-Bragg grating Fabry–Perot interferometer with pulse-position modulation scheme: compensation of source wavelength sweep nonlinearity. IEEE Photonics J. 5, 6801108 (2013)

    Article  ADS  Google Scholar 

  30. Chow, J.H., McClelland, D.E., Gray, M.B., Littler, I.C.M.: Demonstration of a passive subpicostrain fiber strain sensor. Opt. Lett. 30(15), 1923 (2005)

    Article  ADS  Google Scholar 

  31. Wada, A., Ikuma, K., Syoji, M., Tanaka, S., Takahashi, N.: Wide-dynamic-range high-resolution fiber Fabry–Perot interferometric sensor with chirped fiber Bragg gratings. J. Lightwave Technol. 31, 3176–3180 (2013)

    Article  ADS  Google Scholar 

  32. Kersey, A., Davis, M., Patrick, H., LeBlanc, M., Koo, K., Askins, C., Putnam, M., Friebele, E.: Fiber grating sensors. J. Lightwave Technol. 15, 1442 (1997)

    Article  ADS  Google Scholar 

  33. Hill, K., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1263 (1997)

    Article  ADS  Google Scholar 

  34. Othonos, A., Kalli, K.: Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Artech House, London (1999)

    Google Scholar 

  35. Kashyap, R.: Fiber Bragg Gratings. Academic Press, Cambridge (2010)

    Google Scholar 

  36. Hecht, E.: Optics, 5th edn. Pearson, London (2016)

    Google Scholar 

Download references

Acknowledgements

This works was supported by JSPS KAKENHI Grant number JP15K06130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Wada.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, A., Tanaka, S. & Takahashi, N. Fast interrogation using sinusoidally current modulated laser diodes for fiber Fabry–Perot interferometric sensor consisting of fiber Bragg gratings. Opt Rev 25, 533–539 (2018). https://doi.org/10.1007/s10043-018-0444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0444-1

Keywords

Navigation