Skip to main content
Log in

Randomly displaced phase distribution design for computer-generated binary hologram with narrow recording spots

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A random phase mask is often used for Fourier transform holography to improve its recording and reconstruction characteristics. However, a conventional random phase pattern has the disadvantage of expanding the recording spot, which is caused by the high-resolution phase modulation. Previously, we proposed a random phase pattern that makes the recording spot narrower than the conventional one with maintaining a moderate reconstruction quality. In the present study, we apply the proposed random phase pattern to computer-generated binary holograms and evaluate both the hologram distribution and reconstruction quality in terms of practical holographic memory systems. The results confirm the effectiveness of the random phase in the reconstruction for an elementary data pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hill, B.: Some aspects of a large capacity holographic memory. Appl. Opt. 11, 182 (1972)

    Article  ADS  Google Scholar 

  2. Pu, A., Psaltis, D.: High-density recording in photopolymer-based holographic three-dimensional disks. Appl. Opt. 35, 2389 (1996)

    Article  ADS  Google Scholar 

  3. Mok, F.H.: Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett. 18, 915 (1993)

    Article  ADS  Google Scholar 

  4. Psaltis, D., Levene, M., Pu, A., Barbastathis, G., Curtis, K.: Holographic storage using shift multiplexing. Opt. Lett. 20, 782 (1995)

    Article  ADS  Google Scholar 

  5. Lande, D., Heanue, J.F., Bashaw, M.C., Hesselink, L.: Digital wavelength-multiplexed holographic data storage system. Opt. Lett. 21, 1780 (1996)

    Article  ADS  Google Scholar 

  6. Lohmann, A.W., Paris, D.P.: Binary Fraunhofer holograms, generated by computer. Appl. Opt. 6, 1739 (1967)

    Article  ADS  Google Scholar 

  7. Tamura, H., Torii, Y.: Enhancement of the Lohmann-type computer-generated hologram encoded by direct multilevel search algorithm. Opt. Rev. 19, 131 (2012)

    Article  Google Scholar 

  8. Martinez, C., Laulagnet, F., Lemonnier, O.: Gray tone image watermarking with complementary computer generated holography. Opt. Express 21, 15438 (2013)

    Article  ADS  Google Scholar 

  9. Tamura, H.: Direct search coding algorithm with reduction in computing time by simultaneous selection rule. Opt. Rev. 21, 364 (2014)

    Article  Google Scholar 

  10. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758 (1982)

    Article  ADS  Google Scholar 

  11. Chang, M.C., Ersoy, O.K.: Iterative interlacing error diffusion for synthesis of computer-generated holograms. Appl. Opt. 32, 3122 (1993)

    Article  ADS  Google Scholar 

  12. Zhang, E., Noehte, S., Dietrich, C.H., Männer, R.: Gradual and random binarization of gray-scale holograms. Appl. Opt. 34, 5987 (1995)

    Article  ADS  Google Scholar 

  13. Eschbach, R.: Comparison of error diffusion methods for computer-generated holograms. Appl. Opt. 30, 3702 (1991)

    Article  ADS  Google Scholar 

  14. Eschbach, R., Fan, Z.: Complex-valued error diffusion for off-axis computer-generated holograms. Appl. Opt. 32, 3130 (1993)

    Article  ADS  Google Scholar 

  15. Fetthauer, F., Weissbach, S., Bryngdahl, O.: Computer-generated Fresnel holograms: quantization with the error diffusion algorithm. Opt. Commun. 114, 230 (1995)

    Article  ADS  Google Scholar 

  16. Tsang, P., Poon, T.-C., Cheung, W.-K., Liu, J.-P.: Computer generation of binary Fresnel holography. Appl. Opt. 50, B88 (2011)

    Article  Google Scholar 

  17. Horimai, H., Tan, X., Li, J.: Collinear holography. Appl. Opt. 44, 2575 (2005)

    Article  ADS  Google Scholar 

  18. Horimai, H., Tan, X.: Collinear technology for a holographic versatile disk. Appl. Opt. 45, 910 (2006)

    Article  ADS  Google Scholar 

  19. Sun, C.-C., Yu, Y.-W., Hsieh, S.-C., Teng, T.-C., Tsai, M.-F.: Point spread function of a collinear holographic storage system. Opt. Express 15, 18111 (2007)

    Article  ADS  Google Scholar 

  20. Nobukawa, T., Nomura, T.: Multilayer recording holographic data storage using a varifocal lens generated with a kinoform. Opt. Lett. 40, 5419 (2015)

    Article  ADS  Google Scholar 

  21. Mitsumori, A., Higuchi, T., Yanagawa, T., Ogasawara, M., Tanaka, S., Iida, T.: Multilayer 500 Gbyte optical disk. Jpn. J. Appl. Phys. 48, 03A055 (2009)

    Article  Google Scholar 

  22. Bruder, F.-K., Hagen, R., RÓ§lle, T., Weiser, M.-S., FÓ§cke, T.: From the surface to volume: concepts for the next generation of optical-holographic data-storage materials. Angew. Chem. Int. Ed. 50, 4552 (2011)

    Article  Google Scholar 

  23. Ono, H., Kawamura, T., Kawatsuki, N., Norisada, H.: Intensity filtering of a two-dimensional optical image in high-performance photorefractive mesogenic composites. Appl. Phys. Lett. 79, 895 (2001)

    Article  ADS  Google Scholar 

  24. Emoto, A., Ono, H., Kawatsuki, N.: Spatial frequency selective reconstruction using Fourier transform holograms generated in functionalized mesogenic composites. Liq. Cryst. 30, 1201 (2003)

    Article  Google Scholar 

  25. Burckhardt, C.B.: Use of a random phase mask for the recording of Fourier transform holograms of data masks. Appl. Opt. 9, 695 (1970)

    Article  ADS  Google Scholar 

  26. Tsunoda, Y., Takeda, Y.: High density image-storage holograms by a random phase sampling method. Appl. Opt. 13, 2046 (1974)

    Article  ADS  Google Scholar 

  27. Nakayama, Y., Kato, M.: Diffuser with pseudorandom phase sequence. J. Opt. Soc. Am. 69, 1367 (1979)

    Article  ADS  Google Scholar 

  28. Bräuer, R., Wyrowshi, F., Bryngdahl, O.: Diffusers in digital holography. J. Opt. Soc. Am. 8, 572 (1991)

    Article  ADS  Google Scholar 

  29. Epstein, R., Skupsky, S.: Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns. J. Appl. Phys. 68, 924 (1990)

    Article  ADS  Google Scholar 

  30. Dixit, S.N., Thomas, I.M., Woods, B.W., Morgan, A.J., Henesian, M.A., Wegner, P.J., Powell, H.T.: Random phase plates for beam smoothing on the Nova laser. Appl. Opt. 32, 2543 (1993)

    Article  ADS  Google Scholar 

  31. Gao, Q., Kostuk, R.: Improvement to holographic digital data-storage systems with random and pseudorandom phase masks. Appl. Opt. 36, 4853 (1997)

    Article  ADS  Google Scholar 

  32. Tan, X., Matoba, O., Shimura, T., Kuroda, K.: Improvement in holographic storage capacity by use of double-random phase encryption. Appl. Opt. 40, 4721 (2001)

    Article  ADS  Google Scholar 

  33. Emoto, A., Fukuda, T.: Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms. Appl. Opt. 52, 1183 (2013)

    Article  ADS  Google Scholar 

  34. Martinez, C., Lemonnier, O., Laulanet, F., Fargeix, A., Tissot, F., Armand, M.F.: Complementary computer generated holography for aesthetic watermarking. Opt. Express 20, 5547 (2012)

    Article  ADS  Google Scholar 

  35. Nobukawa, T., Nomura, T.: Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage. Appl. Opt. 53, 3773 (2014)

    Article  ADS  Google Scholar 

  36. Tajima, K., Nakamura, Y., Hoshizawa, T.: High-density recording in holographic data storage system by dual 2-level run-length-limited modulation. Jpn. J. Appl. Phys. 55, 09SA09 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study is partly supported by the Japan Science and Technology Agency (JST) under the Strategic Promotion of Innovative Research and Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Emoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiramoto, S., Fukuda, T. & Emoto, A. Randomly displaced phase distribution design for computer-generated binary hologram with narrow recording spots. Opt Rev 25, 509–516 (2018). https://doi.org/10.1007/s10043-018-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0441-4

Keywords

Navigation