Optical Review

, Volume 25, Issue 3, pp 356–364 | Cite as

Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

  • Jianjun Chen
  • Yingni Duan
  • Zhuqiang Zhong
Regular Paper


A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.


Vertical-cavity surface-emitting lasers (VCSELs) Chaotic optical injection Complex degree Time-delay signature 



This work was supported by the National Natural Science Foundation of China under Grant No. 31760269 and the Scientific Research Project of Colleges in Xinjiang under Grant No. XJEDU2016S057.


  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kocarev, L.: Chaos-based cryptography: a brief overview. Circuits Syst. Mag. 1(3), 6–21 (2001)CrossRefGoogle Scholar
  3. 3.
    Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., Garcı´a-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438(7066), 343–346 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Argyris, A., Hamacher, M., Chlouverakis, K.E., Bogris, A., Syvridis, D.: Photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100(19), 194101 (2008)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Liu, J.M., Wu, Z.M., Xia, G.Q.: Dual-chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection. Opt. Express 17(15), 12619–12626 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Lin, F.Y., Liu, J.M.: Diverse waveform generation using semiconductor lasers for radar and microwave applications. IEEE J. Quantum Electron. 40(6), 682–689 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Lin, F.Y., Liu, J.M.: Chaotic lidar. IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004)CrossRefGoogle Scholar
  8. 8.
    Reidler, I., Aviad, Y., Rosenbluh, M., Kanter, I.: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103(2), 024102 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photonics 4(1), 58–61 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Argyris, A., Deligiannidis, S., Pikasis, E., Bogris, A., Syvridis, D.: Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18(18), 18763–18768 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Toomey, J.P., Kane, D.M., Lee, M.W., Shore, K.A.: Nonlinear dynamics of semiconductor lasers with feedback and modulation. Opt. Express 18(16), 16955–16972 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Xiang, S.Y., Pan, W., Yan, L.S., Luo, B., Zou, X.H., Jiang, N., Yang, L.: Impact of complex on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback. Opt. Lett. 36(17), 3497–3499 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Soriano, M.C., Colet, P., Mirassso, C.R.: Security implications of open and closed-loop receivers in all-optical chaos-based communications. IEEE Photon. Technol. Lett. 21(7), 426–428 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, A.B., Wang, N., Yang, Y.B., Wang, B.J., Zhang, M.J., Wang, Y.C.: Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser. J. Lightw. Technol. 30(21), 3420–3426 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Li, N.Q., Kim, B., Chizhevsky, V.N., Locquet, A., Bloch, M., Citrin, D.S., Pan, W.: Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser. Opt. Express 22(6), 6634–6646 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, A.B., Wang, L.S., Li, P., Wang, Y.C.: Minimal-post-processing 32-Gbps true random bit generation using physical white chaos. Opt. Express 25(4), 3153–3164 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Ugajin, K., Terashima, Y., Iwakawa, K., Uchida, A., Harayama, T., Yoshimura, K., Inubushi, M.: Real-time fast physical random number generator with a photonic integrated circuit. Opt. Express 25(6), 6511–6523 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Rontani, D., Locquet, A., Sciamanna, M., Citrin, D.S., Ortin, S.: Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view. IEEE J. Quantum Electron. 45(7), 879–891 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Heiligenthal, S., Dahms, T., Yanchuk, S., Jungling, T., Flunkert, V., Kanter, I., Scholl, E., Kinzel, W.: Strong and weak chaos in nonlinear networks with time-delayed couplings. Phys. Rev. Lett. 107(23), 234102 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Hegger, R., Bünner, M.J., Kantz, H., Giaquinta, A.: Identifying and modeling delay feedback systems. Phys. Rev. Lett. 81(3), 558–561 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Bandt, C., Pompe, B.: Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Zhou, C., Lai, C.H.: Extracting messages masked by chaotic signals of time-delay systems. Phys. Rev. E 60(1), 320–323 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Rontani, D., Locquet, A., Sciamanna, M., Citrin, D.S.: Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32(20), 2960–2962 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Wu, Y., Wang, Y.C., Li, P., Wang, A.B., Zhang, M.J.: Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback. IEEE J. Quantum Electron. 48(11), 1371–1379 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Wu, J.G., Xia, G.Q., Wu, Z.M.: Suppression of time delay signature of chaotic output in a semiconductor laser with double optical feedback. Opt. Express 17(22), 20124–20133 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Xiang, S.Y., Pan, W., Yan, L.S., Luo, B., Zou, X.H., Jiang, N., Wen, K.H.: Quantifying chaotic unpredictability of vertical-cavity surface-emitting lasers with polarized optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron. 17(5), 1212–1219 (2011)CrossRefGoogle Scholar
  27. 27.
    Li, S.S., Liu, Q., Chan, S.C.: Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser. IEEE Photonics J. 4(5), 1930–1935 (2012)CrossRefGoogle Scholar
  28. 28.
    Uchida, A., Heil, T., Liu, Y., Davis, P., Aida, T.: High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection. IEEE J. Quantum Electron. 39(11), 1462–1467 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Li, N.Q., Pan, W., Xiang, S.Y., Yan, L.S., Luo, B., Zou, X.H., Zhang, L.Y., Mu, P.H.: Photonic generation of wideband time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser. IEEE J. Quantum Electron. 48(10), 1339–1345 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Xiang, S.Y., Pan, W., Luo, B., Yan, L.S., Zou, X.H., Li, N.Q., Zhu, H.N.: Wideband complex-enhanced chaotic semiconductor lasers with dual-chaotic optical injections. IEEE J. Quantum Electron. 48(8), 1069–1076 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Iga, K.: Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000)CrossRefGoogle Scholar
  32. 32.
    Koyama, F.: Recent advances of VCSEL photonics. J. Lightw. Technol. 24(12), 4502–4513 (2006)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hong, Y., Spencer, P.S., Shore, K.A.: Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection. IEEE J. Quantum Electron. 50(4), 236–242 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Hong, Y., Quirce, A., Wang, B., Ji, S., Panajotov, K., Spencer, P.S.: Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 52(8), 2400508 (2016)Google Scholar
  35. 35.
    Martin-Regalado, J., Prati, F., San Miguel, M., Abraham, N.B.: Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33(5), 765–783 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    Zunino, L., Rosso, O.A., Soriano, M.C.: Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron. 17(5), 1250–1257 (2011)CrossRefGoogle Scholar
  37. 37.
    Wu, J.G., Wu, Z.M., Xia, G.Q., Feng, G.Y.: Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system. Opt. Express 20(2), 1741–1753 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Toomey, J.P., Kane, D.M.: Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 22(2), 1713–1725 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.School of Medical Engineering and TechnologyXinjiang Medical UniversityUrumqiChina
  2. 2.School of ScienceChongqing University of TechnologyChongqingChina

Personalised recommendations