Skip to main content

Advertisement

Log in

Plasmon coupling in the double-sector structure

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A silver nanostructure consisting of double sectors is proposed in this paper. In addition, the plasmon resonance and electric field enhancement have been investigated theoretically. It is found that, in this structure, the multiple resonances produce, which is tunable by the parameter of the structure. The localized electromagnetic fields can be produced at the tips of the structure. In addition, the enhanced electromagnetic fields can be observed between the sectors in a wide scale at the lower energy peak. The result of the investigation has great significance for the production of practical nanostructures and the improvement of possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J.J., Smith, D.R., Schultz, S.: Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3(8), 1087–1090 (2003)

    Article  ADS  Google Scholar 

  2. Verellen, N., Van Dorpe, P., Huang, C.J., Lodewijks, K., Vandenbosch G.A.E., Lagae, L., Moshchalkov, V.V.: Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11(2), 391–397 (2011)

    Article  ADS  Google Scholar 

  3. Yang, Z.J., Zhang, Z.S., Zhang, W., Hao, Z.H., Wang, Q.Q.: Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers. Appl. Phys. Lett. 96, 131113 (2010)

    Article  ADS  Google Scholar 

  4. Funston, A.M., Novo, C., Davis, T.J., Mulvaney, P.: Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009)

    Article  ADS  Google Scholar 

  5. Yun, B.F., Hu, G.H., Cong, J.W., Cui, Y.P.: Fano resonances induced by strong interactions between dipole and multipole plasmons in tshaped nanorod dimer. Plasmonics 9, 691–698 (2014)

    Article  Google Scholar 

  6. Dong, J., Zhang, Z., Zheng, H., Sun, M.: Recent progress on plasmon-enhanced fluorescence. Nanophotonics 4(1), 472–490 (2015)

    Article  Google Scholar 

  7. Sun, M., Zhang, Z., Wang, P., Li, Q., Ma, F., Xu, H.: Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light Sci. Appl. 2, e112 (2013)

    Article  Google Scholar 

  8. Esteban, R., Vogelgesang, R., Dorfmüller, J., Dmitriev, A., Rockstuhl, C.: Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8(10), 3155–3159 (2008)

    Article  ADS  Google Scholar 

  9. Vasconcelos, T.L., Archanjo, B.S., Fragneaud, B., Oliveira, B.S., Riikonen, J.: Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9(6):6297–6304 (2015)

    Article  Google Scholar 

  10. Fu, Y.H., Zhang, J.B., Yu, Y.F., Luk’yanchuk, B.: Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6, 5130–5137 (2012)

    Article  Google Scholar 

  11. Zhou, L., Fu, X.F., Yu, L., Zhang, X., Yu, X.F., Hao, Z.H.: Crystal structure and optical properties of silver nanorings. Appl. Phys. Lett. 94, 153102 (2009)

    Article  ADS  Google Scholar 

  12. Bukasov, R., Shumaker-Parry, J.S.: Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 7(5), 1113–1118 (2007)

    Article  ADS  Google Scholar 

  13. Liu, T., Li, J., Gao, F., Han, Q., Liu, S.: Generation and manipulation of higher order Fano resonances in plasmonic nanodisks with a built-in missing sectorial slice. EPL 104, 47009 (2013)

    Article  ADS  Google Scholar 

  14. Wang, H., Wu, Y., Lassiter, B., Nehl, C.L., Hafner, J.H., Nordlander, P., Halas, N.J.: Symmetry breaking in individual plasmonic nanoparticles. Proc. Natl Acad. Sci. USA 103, 10856–10860 (2006)

    Article  ADS  Google Scholar 

  15. Brown, L.V., Sobhani, H., Lassiter, J.B., Nordlander, P., Halas, H.J., Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010)

    Article  Google Scholar 

  16. Sonnefraud, Y., Verellen, N., Sobhani, H., Vandenbosch, G.A.E., Moshchalkov, V.V., Dorpe, P.V., Nordlander, P., Maier, S.A.: Experimental realization of subradiant, superradiant: and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 3, 1664–1670 (2010)

    Article  Google Scholar 

  17. Fang, Y., Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015)

    Article  Google Scholar 

  18. Wang, C., Wu, Y., Zheng, H., Li, C., Li, J.: Generation of high-order resonance modes in visible and near-infrared range from square ring–disk system. Plasmonics 10, 1915–1920 (2015)

    Article  Google Scholar 

  19. Y. Zhang, 1 T. Q. Jia, 1, a_ D. H. Feng, and Z. Z. Xu2,Quadrupole plasmon resonance mode in nanocrescent/nanodisk structure:Local field enhancement and tunability in the visible light region. Appl. Phys. Lett., 2011,98:163110

  20. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 11304247), Natural Science Basis Research Plan in Shaanxi Province of China (No. 2016GY-029), Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars (No. 2015KJXX-40), and The Natural Science Foundation of Shaanxi Educational Committee (Program No. 15JK1668).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runcai Miao or Jun Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Miao, R. & Dong, J. Plasmon coupling in the double-sector structure. Opt Rev 24, 297–300 (2017). https://doi.org/10.1007/s10043-017-0314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0314-2

Keywords

Navigation