Advertisement

Optical Review

, Volume 24, Issue 2, pp 147–155 | Cite as

Ultra-high negative dispersion compensating square lattice based single mode photonic crystal fiber with high nonlinearity

Regular Paper

Abstract

This paper presents dispersion tailoring of photonic crystal fibers creating artificial defect along one of the regular square axes. A finite element method (FEM) has been enforced for numerical investigation of several guiding properties of the PCF covering a broad wavelength range about 1340–1640 nm over the telecommunication windows. According to simulation, the proposed PCF has obtained a strictly single-mode fiber, which has an ultra-high negative dispersion of about −584.60 to −2337.60 ps/(nm-km) and also possible to cover the highest nonlinearity order of 131.91 W−1 km−1 under the operating wavelength. Moreover, the proposed PCF structure experimentally focuses on higher nonlinear coefficient, which successfully compensates the chromatic dispersion of standard single mode in entire band of interest and greatly applicable to the optical transmission system. Additionally, the single mode behavior of S-PCF is explicated by employing V parameter. In our dispersion sensitive analysis, this fiber is significantly more robust due to successfully achieve ultra-high negative dispersion, which gains more promiscuous compared to the prior best results.

Keywords

Ultra-high negative dispersion Nonlinear coefficient Dispersion compensating S-PCF Finite element method Single mode fiber 

Notes

Acknowledgements

There is no funding for this research. The authors are grateful to all of the subjects who participated in this research.

References

  1. 1.
    Rabiul Hasan, M., Hasan, M.I., Shamim Anower, M.: Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands. Appl. Optics. 54(32), 9456 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Knight, J.C.: Photonic crystal fibres. Nature 424(6950), 847–851 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Zsigri, B., Lægsgaard, J., Bjarklev, A.: A novel photonic crystal fibre design for dispersion compensation. J. Opt. A Pure Appl. Opt. 6(7), 717–720 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Litchinitser, N.M., Eggleton, B.J., Patterson, D.B.: Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression. J. Lightwave Technol. 15(8), 1303–1313 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Bulow, H., Buchali, F., Klekamp, A.: Electronic dispersion compensation. J. Lightwave Technol. 26(1) 158–167 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Watanabe, S., Naito, T., Chikama, T.: Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation. IEEE Photon. Technol. Lett. 5(1) 92–95 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: A new class of optical Waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Shen, L.P., Huang, W., Chen, G.X., Jian, S.S.: Design and optimization of photonic crystal fibers for broad-band dispersion compensation. IEEE Photon. Technol. Lett. 15(4), 540–542 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Huttunen, A., Torma, P.: “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area”. Opt. Express. 13(2), 627 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Prabhakar, G., Peer, A., Rastogi, V., Kumar, A.: Large-effective-area dispersion-compensating fiber design based on dual-core microstructure. Appl. Opt. 52(19), 4505 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Maji, P.S., Chaudhuri, P.R.: Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation. Opt. Commun. 325, 134–143 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    X. Zhao et al.: Photonic crystal fiber for dispersion compensation. Appl. Opt. 47(28), 5190 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Maji, P.S., Chaudhuri, P.R.: Designing an ultra-negative dispersion Photonic crystal fiber with square-lattice geometry. ISRN Opt. 2014, 1–7 (2014)CrossRefGoogle Scholar
  14. 14.
    Poli, F. et al.: Single-mode regime of square-lattice photonic crystal fibers. J. Opt. Soc. Am. A, 22(8), 1655 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Bouk, A.H., Cucinotta, A., Poli, F., Selleri, S.: Dispersion properties of square-lattice photonic crystal fibers. Opt. Express. 12(5), 941 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Birks, T.A., Mogilevtsev, D., Knight, J.C., St. Russell, P.J.: Dispersion compensation using single-material fibers. IEEE Photon. Technol. Lett. 11(6), 674–676, (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Yang, S., et al.: “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field”. Opt. Express. 14(7), 3015 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Matsui, T., Nakajima, K., Sankawa, I.: Dispersion compensation over all the telecommunication bands with double-cladding Photonic-Crystal fiber. J. Lightwave Technol. 25(3), 757–762, (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Yokokawa, T., Kato, T., Fujii, T., Yamamoto, Y., Honma, N., Kataoka, A., Onishi, M., Sasaoka, E., Okamoto, K.: Dispersion compensating fiber with large negative dispersion around 300 ps/km/nm and its application to compact module for dispersion adjustment. Opt. Fiber Commun. CON. 2, 717–719(2003)Google Scholar
  20. 20.
    Roberts, P.J. et al.: Control of dispersion in photonic crystal fibers. J. Opt. Fiber Commun. Rep. 2(5), 435–461, (2005)CrossRefGoogle Scholar
  21. 21.
    Yang, S., Zhang, Y., He, L., Xie, S.: Broadband dispersion-compensating photonic crystal fiber. Opt. Lett. 31(19), 2830, (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Poli, F., Cucinotta, A., Selleri, S., Bouk, A.H.: Tailoring of flattened dispersion in highly Nonlinear Photonic crystal fibers. IEEE Photon. Technol. Lett. 16(4), 1065–1067, (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Lee, M.K., Ma, P.S., Lee, I.K., Kim, H.W., Kim, Y.Y.: Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98(1), 011909, (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Maji, P.S., Roy Chaudhuri, P.: Dispersion properties of the square-lattice elliptical-core PCFs. Am. J. Opt. Photonics (AJOP). 2(1), 1–6, (2014)Google Scholar
  25. 25.
    Saitoh, K., Koshiba, M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38(7), 927–933, (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Namihira, Y., Hossain, M.A., Goffar Khan, M.A.: Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers. Optik-Int. J. Light Electron Opt. 124(19), 3851–3855, (2013)CrossRefGoogle Scholar
  27. 27.
    Kaijage, S.F., et al.: Broadband dispersion compensating octagonal Photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48(5), 052401, (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P.: Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett. 28(20), 1879, (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Hasan, M.I., Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(1), 32–38, (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Anwar Hossain, M.: Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19(5), 461–467, (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Haque, M.M., Rahman, M.S., Habib, M.S., Razzak, S.M.A.: Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik-Int. J. Light Electron Opt. 125(11), 2608–2611, (2014)CrossRefGoogle Scholar
  32. 32.
    Hasan, M.I., Habib, M.S., Razzak, S.M.A.: Design of hybrid photonic crystal fiber: Polarization and dispersion properties. Photon. Nanostructures Fundam. Appl. 12(2), 205–211, (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Hamzaoui, H.El, et al.: Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express. 20(28), 29751, (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Hasan, M.R., Islam, M.A., Rifat, A.A.: A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64(3), 218–225, (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Lee, J.H.et al.: A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878, (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Issa, N.A., van Eijkelenborg, M.A., Henry, G., Fellew, M., Large, M.C.: Fabrication and characterization of microstructured optical fibres with elliptical holes. In Conference on Lasers and Electro-Optics (p. CThX3). Optical Society of America, Washington, DC, (2004)Google Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Md. Ibadul Islam
    • 1
  • Maksuda Khatun
    • 1
  • Kawsar Ahmed
    • 1
  1. 1.Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversityTangail-1902Bangladesh

Personalised recommendations