Evaluation of the influence of river bank infiltration on groundwater in an inland alluvial fan using spectral analysis and environmental tracers

Evaluation de l’influence de l’infiltration de berges sur l’eau souterraine dans un cône alluvial intérieur par l’application de l’analyse spectrale et de traceurs environnementaux

Evaluación de la influencia sobre las aguas subterráneas de la infiltración en las márgenes de los ríos en un abanico aluvial interior mediante análisis espectral y trazadores ambientales

利用频谱分析和环境示踪剂评价内陆河冲积扇河岸入渗对地下水的影响

Avaliação da influência nas águas subterrâneas pela infiltração nas margens de rio em um leque aluvial continental usando análises espectrais e traçadores ambientais

Abstract

Understanding the influence of river-water infiltration on groundwater is essential for effective management of groundwater resources adjacent to a losing river. This study evaluates the influence of river-water infiltration in the alluvial fan of the Nalenggele River basin, northwest China, using (1) spectral analysis to analyze river discharges and groundwater levels, and (2) environmental tracers. The fluctuation period of groundwater levels was similar to that of river discharge. However, the time lag was about 50–150 days (increasing with distance from the channel), and the fluctuation period also increased with distance from the channel, from 297 to 990 days; this indicated a weakening influence towards the flanks of the alluvial fan. The total dissolved solids and δ18O values of the groundwater were close to those of the river water when the influence of river bank infiltration was strong. The spatial distribution of groundwater 14C activity reflected the influence of river bank infiltration and the groundwater residence time; 14C activities larger than 50 pMC in groundwater indicated a strong mixing with river water and fast groundwater flow, and reflected the strong influence of river bank infiltration. Data confirmed that the zone of strongest influence was near the river channel (horizontal distance ~5 km, maximum depth 150 m), whereas the zone of weakest influence was in areas far away from both sides of the river channel and near where groundwater seeps to the surface. River bank infiltration should be considered when developing groundwater resources to ensure the security of water supply.

Résumé

La compréhension de l’influence de l’infiltration de l’eau de rivière sur l’eau souterraine est essentielle pour une gestion efficace des ressources en eau souterraine avoisinant un cours d’eau alimentant la nappe. Cette étude évalue l’influence de l’infiltration de l’eau de rivière dans le cône alluvial du bassin de la rivière Nalenggele, nord-ouest de la Chine en mettant en œuvre (1) l’analyse spectrale pour analyser les débits de la rivière et les niveaux de nappe et (2) des traceurs environnementaux. La période de fluctuation des niveaux de nappe est similaire à celle des débits de la rivière. Cependant, le décalage temporel est compris entre 50 et 150 jours (augmentant avec la distance au lit du cours d’eau) et la période de fluctuation augmente également avec la distance au lit du cours d’eau, de 297 à 990 jours ; cela indique une influence qui s’affaiblit en direction des flancs du cône alluvial. Les matières dissoutes totales et les valeurs en δ18O de l’eau souterraine sont proches de celles de l’eau de la rivière quand l’influence de l’infiltration de berges est fort. La distribution spatiale des activités en 14C de l’eau souterraine illustre l’influence de l’infiltration de berges et le temps de résidence de l’eau souterraine ; les activités en 14C au-dessus de 50 pMC dans l’eau souterraine indiquent un fort mélange avec l’eau de la rivière ainsi qu’un écoulement souterrain rapide, et reflète la forte influence de l’infiltration de berges. Les données confirment que la zone sous plus forte influence est proche du lit du cours d’eau (distance horizontale ~5 km, profondeur maximale 150 m) alors que la zone sous plus faible influence se situe dans les secteurs éloignés des deux côtés du lit du cours d’eau et proches d’où l’eau souterraine émerge à la surface. L’infiltration de berges doit être prise en compte lors de l’exploitation des ressources en eau souterraine afin de garantir la sécurité de l’approvisionnement en eau.

Resumen

La determinación de la influencia de la infiltración de las aguas de un río en las aguas subterráneas es esencial para una gestión eficaz de los recursos hídricos subterráneos cercanos a un río perdedor. Este estudio evalúa la influencia de la infiltración del agua fluvial en el abanico aluvial de la cuenca del río Nalenggele, al noroeste de China, utilizando (1) análisis espectral para evaluar las descargas del río y los niveles de las aguas subterráneas, y (2) trazadores ambientales. El período de fluctuación de dichos niveles fue similar al de la descarga de los ríos. El intervalo del retraso fue de unos 50 a 150 días (que aumentaba con la distancia del canal), y el período de fluctuación también se incrementaba de igual forma de 297 a 990 días; esto indicaba una influencia cada vez menor hacia los flancos del abanico aluvial. El total de sólidos disueltos y los valores δ18O de las aguas subterráneas se aproximaban a los del agua del río cuando la influencia de la infiltración de la margen del río era considerable. La distribución espacial de la actividad del 14C en las aguas subterráneas reflejaba la influencia de la infiltración de la margen del río y su tiempo de residencia; las actividades del 14C superiores a 50 pMC indicaban una fuerte mezcla con el agua del río y un rápido flujo de aguas subterráneas, y reflejaban la fuerte influencia de la infiltración en la margen del río. Los datos confirmaron que la zona de mayor influencia estaba cerca del cauce del río (distancia horizontal ~5 km, profundidad máxima 150 m), mientras que la zona de menor influencia se encontraba en zonas alejadas de ambos lados del cauce del río y cerca de donde las aguas subterráneas se filtran hacia la superficie. La infiltración de la margen del río debe tenerse en cuenta al desarrollar los recursos hídricos subterráneos para garantizar la seguridad en el abastecimiento de agua.

摘要

了解河水入渗对地下水的影响对于有效管理亏水河附近的地下水资源至关重要。本研究使用以下方法评估了河水入渗对中国西北那棱格勒河流域冲积扇的影响:(1)频谱分析用于分析河流流量和地下水位,(2)环境示踪剂。地下水位的波动期与河流流量的相似。但是,时间延迟大约为50至150天(随着距河道距离的增加而增加),波动周期也随距河道的距离而增加,从297天增加至990天,同时表明对冲积扇侧面的影响减弱。当河岸入渗的影响较强时,地下水中总溶解固体和δ18O值接近河水中的值。地下水中14C活度的空间分布反映了河岸入渗和地下水滞留时间的影响。地下水中14C活度大于50 pMC时,表明与河水强烈混合并快速流入地下水,并反映了河岸入渗的强烈影响。数据表明影响力最大的区域在河道附近(水平距离〜5 km,最大深度150 m),而影响力最小的区域在远离河道两侧和地下水渗出区附近。因此开发地下水资源时,应考虑河床入渗,以确保供水安全。

Resumo

Compreender a influência da infiltração da água do rio nas águas subterrâneas é essencial para a gestão eficaz dos recursos hídricos subterrâneos adjacentes a um rio influente. Este estudo avalia a influência da infiltração da água do rio em um leque aluvial da bacia do Rio Nalenggele, noroeste da China, usando: (1) análise espectral para avaliar as vazões do rio e níveis de água subterrânea, e (2) traçadores ambientais. O período de flutuação dos níveis da água subterrânea foi semelhante ao da vazão do rio. No entanto, o passo de tempo foi de cerca de 50 a 150 dias (aumentando com a distanciamento da calha do rio), e o período de flutuação também aumentou com a distância a calha do rio, de 297 para 990 dias; isso indicou uma diminuição da influência em direção aos extremos laterais do leque aluvial. Os sólidos totais dissolvidos e os valores de δ18O da água subterrânea foram mais próximos aos da água do rio quando a influência da infiltração nas margens do rio foi mais forte. A distribuição espacial da atividade do 14C da água subterrânea refletiu a influência da infiltração nas margens do rio e o tempo de residência na água subterrânea; atividades do 14C maiores que 50 pMC na água subterrânea indicaram uma forte mistura com a água do rio e rápido fluxo da água subterrânea, e refletiram a forte influência da infiltração nas margens do rio. Os dados confirmaram que a zona de influência foi mais forte próximo a calha do rio (distância horizontal ~ 5 km, profundidade máxima 150 m), enquanto a zona de influência ficou mais fraca nas áreas distantes de ambos os lados da calha do rio e perto de onde a água subterrânea escoa em direção a superfície. A infiltração nas margens do rio deve ser considerada ao desenvolver os recursos hídricos subterrâneos para garantir a segurança do abastecimento de água.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ahel M, Schaffner C, Giger W (1996) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment, III: occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater. Water Res 30(1):37–46

    Article  Google Scholar 

  2. Banks EW, Simmons CT, Love AJ, Shand P (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implications for regional scale water quantity and quality. J Hydrol 404:30–49

    Article  Google Scholar 

  3. Bendat JS, Piersol AG (1991) Random data, analysis and measurement procedures. Wiley, 566 pp

  4. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Kipfer R (1999) Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs. J Hydrol 220:169–185

    Article  Google Scholar 

  5. Bloomfield P (1976) Fourier analysis of time series: an introduction. Wiley, Chichester, UK, pp 80–87

  6. Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27(4):661–666

    Article  Google Scholar 

  7. Brian GK, Tyler BC, Thomas DB, Davis JH (1997) Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water 35(6):1014–1028

    Article  Google Scholar 

  8. Cartwright I, Weaver TR, Simmons CT, Fifield LK, Lawrence CR, Chisari R, Varley S (2010) Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia. J Hydrol 380(1–2):203–221

    Article  Google Scholar 

  9. Christine EH, Andrew TF, Justin SR, Jim C, Chris R (2006) Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42(10):W10410. https://doi.org/10.1029/2005WR004787

    Article  Google Scholar 

  10. Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41(1):W01008. https://doi.org/10.1029/2004WR003077

    Article  Google Scholar 

  11. Dahan O, Tatarsky B, Enzel Y, Kulls C, Seely M, Benito G (2008) Dynamics of flood water infiltration and ground water recharge in hyperarid desert. Ground Water 46(3):450–461

    Article  Google Scholar 

  12. Doussan C, Ledoux E, Detay M (1998) River-groundwater exchanges, bank filtration, and groundwater quality: ammonium behavior. J Environ Qual 27:1418–1427

    Article  Google Scholar 

  13. Duan J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf Sci 100–102:475–502

    Article  Google Scholar 

  14. Gilfedder BS, Cartwright I, Hofmann H, Frei S (2018) Explicit modeling of radon-222 in hydrogeosphere during steady state and dynamic transient storage. Ground Water 57:36–47

    Article  Google Scholar 

  15. Gunten HRV, Kull TP (1986) Infiltration of inorganic compounds from the Glatt River, Switzerland, into a groundwater aquifer. Water Air Soil Pollut 29(3):333–346

    Article  Google Scholar 

  16. Hamann E, Stuyfzand PJ, Greskowiak J, Timmer H, Massmann G (2016) The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci Total Environ 545:629e640

    Google Scholar 

  17. Huntscha S, Velosa DMR, Schroth MH, Hollender J (2013) Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests. Environ Sci Technol 47(20):11512–11521

    Article  Google Scholar 

  18. Jenkins GM, Box GP (1976) Time series analysis forecasting and control. Holden-Day, San Francisco, 525 pp

    Google Scholar 

  19. Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco, 525 pp

    Google Scholar 

  20. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  Google Scholar 

  21. Kumar M, Al R, Keshari AK (2009) Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques. Hydrol Process 23:297–310

    Article  Google Scholar 

  22. Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231

    Article  Google Scholar 

  23. Li J, Wang H, Wei L (2007) Isotopic and hydrochemical characteristics of groundwater in the Golmud River basin (in Chinese with English abstract). Northwest Geol 40(4):94–100

    Google Scholar 

  24. McCarthy KA, McFarland WD, Wilkinson JM, White LD (1992) The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. J Hydrol 135(1–4):1–12

    Article  Google Scholar 

  25. Moeck C, Radny D, Popp A, Brennwald M, Stoll S, Auckenthaler A, Berg M, Schirmer M (2017) Characterization of a managed aquifer recharge system using multiple tracers. Sci Total Environ 609:701–714

    Article  Google Scholar 

  26. Mondal NC, Singh VP, Singh VS, Saxena VK (2010) Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J Hydrol 388:100–111

    Article  Google Scholar 

  27. Négrel PH, Giraud EP, Barbier J, Gautier E (2003) Surface water–groundwater interactions in an alluvial plain: chemical and isotopic systematics. J Hydrol 277:248–267

    Article  Google Scholar 

  28. Refsgaard JC, Christensen S, Sonnenborg TO, Seifert D, Højberg AL, Troldborg L (2012) Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv Water Resour 36:36–50

    Article  Google Scholar 

  29. Rodgers P, Soulsby C, Petry J, Malcolm I, Gibbins C, Dunn S (2004) Groundwater–surface-water interactions in a braided river: a tracer-based assessment. Hydrol Process 18:1315–1332

    Article  Google Scholar 

  30. Scheihing KW (2018) Evidence of short-term groundwater recharge signal propagation from the Andes to the central Atacama Desert: a singular spectrum analysis approach. Hydrol Sci J 63(8):1255–1261

    Article  Google Scholar 

  31. Schiavo MA, Hauser S, Povinec PP (2009) Stable isotopes of water as a tool to study groundwater–seawater interactions in coastal south-eastern Sicily. J Hydrol 364:40–49

    Article  Google Scholar 

  32. Shaw RD, Prepas EE (1990) Groundwater–lake interactions: I. accuracy of seepage meter estimates of lake seepage. J Hydrol 119:105–120

    Article  Google Scholar 

  33. Shih DCF, Chiou KF, Lee CD, Wang IS (1999) Spectral responses of water level in in tidal river and groundwater. Hydrol Process 13(6):889–911

    Article  Google Scholar 

  34. Shih DCF, Lee CD, Chiou KF, Tsai SM (2000) Spectral analysis of tidal fluctuations in ground water level. J Am Water Resour Assoc 36(5):1087–1099

    Article  Google Scholar 

  35. Smerdon BD, Gardner WP, Harrington GA, Tickell, Steven J (2012) Identifying the contribution of regional groundwater to the baseflow of a tropical river (Daly River, Australia). J Hydrol 464:107–115

    Article  Google Scholar 

  36. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  37. Soulsby C, Piegat K, Seibert J, Tetzlaff D (2011) Catchment-scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrol Process 25(25):3960–3976

    Article  Google Scholar 

  38. Su X, Xu W, Yang F, Zhu P (2015) Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer 222Rn in data poor regions: a case study in Northwest China. Hydrol Process 29(6):979–990

    Article  Google Scholar 

  39. Su X, Lu S, Gao R, Su D, Yuan WZ, Dai ZX, Papavasilopoulos EN (2017) Groundwater flow path determination during riverbank filtration affected by groundwater exploitation: a case study of Liao River, Northeast China. Hydrol Sci J 7:1–17

    Google Scholar 

  40. Teng Y, Hu B, Zheng J, Wang J, Zhai Y, Zhu C (2018) Water quality responses to the interaction between surface water and groundwater along the Songhua River, Northeast China. Hydrogeol J 26(5):1591–1607

    Article  Google Scholar 

  41. Ulrich C, Hubbard SS, Florsheim J et al (2015) Riverbed clogging associated with a California riverbank filtration system: an assessment of mechanisms and monitoring approaches. J Hydrol 529:1740–1753

    Article  Google Scholar 

  42. United Nations (2020) The world. https://www.un.org/Depts/Cartographic/map/profile/world.pdf. Accessed December 2020

  43. Visser A, Moran JE, Singleton MJ, Esser BK (2018) Importance of river water recharge to the San Joaquin Valley groundwater system. Hydrol Process 32(9):1202–1213

    Article  Google Scholar 

  44. Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246:223–234

    Article  Google Scholar 

  45. Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. Rev Geophys 33(S2):985–994

  46. Xu W, Du S (2014) Information entropy evolution for groundwater flow system: a case study of artificial recharge in Shijiazhuang City, China. Entropy 16(8):4408–4419

    Article  Google Scholar 

  47. Xu W, Su XS, Dai ZX, Yang FT, Zhu PC, Huang Y (2017) Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China. Hydrogeol J 25(7):2015–2029

    Article  Google Scholar 

  48. Xu W, Zhu PC, Yang FT (2019) Evaluation of groundwater recharge sources based on environmental tracers in an arid alluvial fan, NW China. J Radioanal Nucl Chem 319:123–113

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage for English language editing.

Funding

This study was partially supported by the National Key Research and Development Plan of China (NO.2018YFC0406604), the Natural Science Foundation of Liaoning Province (No. 2020-MS-207) and the National Natural Science Foundation of China (Nos. 41602247 and 41877178).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Xiaosi Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, H., Zhu, P. et al. Evaluation of the influence of river bank infiltration on groundwater in an inland alluvial fan using spectral analysis and environmental tracers. Hydrogeol J (2021). https://doi.org/10.1007/s10040-020-02290-z

Download citation

Keywords

  • River bank infiltration
  • Groundwater flow
  • Spectral analysis
  • Environmental tracers
  • Groundwater/surface-water relations