Connectivity of fractures and groundwater flows analyses into the Western Andean Front by means of a topological approach (Aconcagua Basin, Central Chile)

Analyses de la connectivité de fractures et des écoulements souterrains dans le Front Andin Occidental par une approche topologique (Bassin de l’Aconcagua, Chili Central)

Análisis de conectividad de fracturas y circulación de agua subterránea en el Frente Occidental Andino mediante un enfoque topológico (Cuenca del Aconcagua, Chile Central)

用拓扑方法研究断裂和地下水向Andean前缘西部的流动之间的联系(智利中部Aconcagua盆地)

Analisi della connettività delle fratture e flussi di acque sotterranee nel Fronte Andino Occidentale mediante un approccio topologico (Bacino del Aconcagua, Cile Centrale)

Conectividade de fraturas e fluxos de águas subterrâneas na Frente Andina Ocidental por meio de uma abordagem topológica (Bacia do Aconcágua, Chile Central)

Abstract

The misunderstanding of hydrogeological processes together with the oversimplification of aquifer conceptual models result in numerous inaccuracies in the management of groundwater resources. In Central Chile (32–36°S), hydrogeological studies have exclusively focused to alluvial aquifers in valleys (~15% of total area) and mountain-front zones remain considered as no-flux boundary conditions. By a topological approach and an analysis of fractures, the hydrogeological potential of the Western Andean Front along the N–S-oriented Pocuro Fault Zone (PFZ) in the Aconcagua Basin were determined. Perennial springs (23) show evidence of groundwater flows into the fractured Principal Cordillera. Topology allows for quantification of the density of connected fractures within the fault zone and its relationship with groundwater circulation. The study results highlight two areas where the density of fractures and connected nodes (Nc) is high (>2.4 km/km2, 2.5 Nc/km2). Both areas are topologically related to the main springs of the PFZ: Termas de Jahuel (discharge ~14.0 m3/h at 22 °C) and Termas El Corazón (discharge ~7.2 m3/h at 20 °C). Outcrop-scale mapping reveals that groundwater outflows from NW–SE fractures, which is consistent with the preferential orientation of the fracture network (N30–60 W) within the PFZ. The results indicate that oblique basement faults are discrete high-permeability structures conducting groundwater across the Western Andean Front from the Principal Cordillera up to adjacent alluvial aquifers (focused recharge). Therefore, the simplistic hydrogeological view of the Western Andean Front (i.e. impervious limit) is partially erroneous.

Résumé

L’incompréhension des systèmes hydrogéologiques et la simplification à outrance de leurs modèles conceptuels résultent en de nombreuses erreurs de gestion des ressources en eau souterraine. Dans le Centre du Chili (32–36°S), les études hydrogéologiques ont été exclusivement portées sur les aquifères alluviaux dans les vallées (~15 % de la surface totale), et les zones de front de montagne sont quant à elles encore considérées comme des limites à flux nul. À travers une approche topologique et l’analyse du réseau de fractures, il a été déterminé le potentiel hydrogéologique du Front Andin Occidental le long de la Zone de Faille Pocuro (orientée N–S) dans le Bassin de l’Aconcagua. La présence de sources pérennes (23) montre l’existence d’écoulements au sein des fractures de la Cordillère Principal. L’approche topologique permet de quantifier la densité de fractures connectées au sein de la zone de faille ainsi que sa relation avec la circulation des eaux souterraines. Les résultats de cette étude soulignent deux zones où la densité de fractures et de nœuds connectés (Nc) est élevée (>2.4 km/km2, 2.5 Nc/km2). Ces deux zones sont topologiquement liées aux deux principales sources de la Zone de Faille Pocuro: Termas de Jahuel (débit ~14.0 m3/h à 22 °C) et Termas El Corazón (débit ~7.2 m3/h à 20 °C). À l’échelle de l’affleurement, les mesures révèlent que les eaux souterraines circulent par des fractures orientées NW–SE, ce qui est cohérent avec l’orientation préférentielle du réseau de fractures (N30–60W) au sein de la Zone de Faille Pocuro. Les résultats montrent que les failles de socle obliques sont des structures discrètes de hautes-perméabilités drainant les eaux souterraines à travers le Front Andin Occidental, depuis la Cordillère Principale jusqu’aux aquifères alluviaux adjacents (recharge focalisée). Par conséquent, la vision hydrogéologique simplifiée du Front Andin Occidental, considéré jusqu’ici comme une limite à flux nul, est en partie erronée.

Resumen

La poca compresión de los procesos hidrogeológicos junto a la simplificación excesiva de los modelos conceptuales da lugar a numerosas imprecisiones en la gestión de los recursos hídricos. En Chile Central (32–36°S), los estudios hidrogeológicos se han centrado exclusivamente en los acuíferos aluviales ubicados en los valles (~15 % del área total de Chile) y las zonas de frente de montaña son consideradas como condición de borde sin flujo. Por medio de una aproximación topológica y un análisis de fracturas, se determinó el potencial hidrogeológico del Frente Occidental Andino a lo largo de la Zona de Falla Pocuro (ZFP) de orientación N–S en la Cuenca del Aconcagua. En esta zona 23 manantiales de caudal permanente evidencian la circulación de agua subterránea en las rocas fracturadas de la Cordillera Principal. La topología ha permitido la cuantificación de la densidad de fracturas conectadas dentro de la zona de falla y su relación con la circulación de agua subterránea. Los resultados de este estudio muestran dos áreas donde la densidad de fracturas y nodos de conexión (Nc) es alta (>2.4 km/km2, 2.5 Nc/km2). Ambas áreas están relacionadas topológicamente con los manantiales principales de la ZFP: Termas de Jahuel (caudal ~14.0 m3/h a 22 °C) y Termas El Corazón (caudal ~7.2 m3/h a 20 °C). El mapeo a escala de afloramiento revela que el agua subterránea circula por fracturas de orientación NO–SE, lo cual es consistente con la orientación preferencial de la red de fracturas dentro de la ZFP (N30–60O). Los resultados indican que las fallas oblicuas de basamento son estructuras discretas de alta permeabilidad que conducen el agua subterránea desde la Cordillera Principal, a través del Frente Occidental Andino, hasta los acuíferos aluviales adyacentes (recarga focalizada). Estos resultados indican que considerar el Frente Occidental Andino como un límite impermeable es, en parte, erróneo.

摘要

对水文地质过程的误解和对含水层概念模型的过度简化,导致地下水资源管理中存在诸多不准确之处。在智利中部,水文地质研究只集中于山谷(约占总面积的15%)冲积含水层,而山前带仍然被认为是零通量边界条件。通过拓扑方法和对断裂带的分析,确定了Aconcagua盆地Andean前缘西部和南北向Pocuro断层带(PFZ)的水文地质潜力。常年性泉(23)表明有地下水流入断裂的Principal Cordillera,拓扑可以量化断层带内连接裂缝的密度以及与地下水循环之间的关系。研究结果特别显示了裂缝和相连节点(Nc)密度高的两个区域(>2.4 km/km2,2.5 Nc/km2)。这两个区域在拓扑上都与PFZ的主要泉水有关:Termas de Jahuel(22°C时排泄量约14.0 m3/h)和Termas El Corazón(20°C时排泄量约7.2 m3/h)。地下水露头尺度的填图显示,NW–SE裂缝有地下水流出,这与PFZ内裂缝网络的优势方向(N30–60W)一致。研究结果表明,倾斜基底断层是离散的高渗透结构,它跨经Andean前缘西部将地下水从Principal Cordillera向上运送至相邻的冲积含水层(集中补给)。因此,将Andean前缘西部的水文地质条件过度简化(如不透水边界)是不完全正确的。

Riassunto

L’incomprensione dei processi idrogeologici insieme a la eccessiva semplificazione dei modelli concettuali delle falde acquifere possono portare a numerose imprecisioni nella gestione delle risorse idriche sotterranee. In Cile centrale (32–36°S), gli studi idrogeologici si sono concentrati esclusivamente sugli acquiferi alluvionali situati nelle valli (~15 % della superficie totale) mentre il contatto con il fronte di montagna rimane considerato come un limite senza flusso. Usando un approccio topologico e un’analisi delle fratture, è stato determinato il potenziale idrogeologico del Fronte Andino Occidentale lungo la Zona di Faglia Pocuro (ZFP) con orientazione N–S, nel bacino del Aconcagua. Le sorgenti perenni (23) mostrano l’evidenza di flussi di acqua sotterranea nelle rocce fratturate della Cordigliera Principale. La topologia ha permesso quantificare la densità delle fratture connesse associate alla zona di faglia e la loro relazione con la circolazione delle acque sotterranee. I risultati dello studio evidenziano due aree in cui la densità delle fratture e dei nodi connessi (Nc) è elevata (>2.4 km/km2, 2.5 Nc/km2). Entrambe le aree sono topologicamente correlate alle principali sorgenti della ZFP: Terme di Jahuel (portata ~14.0 m3/h a 22 °C) e Terme di El Corazón (portata ~7.2 m3/h a 20 °C). La mappatura degli affioramenti rivela che le acque sotterranee scorrono dalle fratture NW–SE, seguendo l’orientamento preferenziale della rete di fratture (N30–60W) all’interno della PFZ. I risultati indicano che le faglie oblique al basamento, sono strutture discrete ad alta permeabilità. Queste conducono le acque sotterranee attraverso il Fronte Andino Occidentale dalla Cordigliera Principale fino agli acquiferi alluvionali adiacenti (ricarica focalizzata). Pertanto, la visione idrogeologica che considera il Fronte Andino Occidentale come un limite senza flusso è parzialmente errata.

Resumo

O mal entendimento dos processos hidrogeológicos, juntamente com a simplificação excessiva de modelos conceituais dos aquíferos, resultam em inúmeras imprecisões na gestão dos recursos hídricos subterrâneos. Por uma abordagem topológica e uma análise de fraturas, foram determinados o potencial hidrogeológico da Frente Andina Ocidental na Bacia do Aconcagua e a Zona de Falha de Pocuro (ZFP) orientada a N–S. As nascentes perenes (23) apresentam as evidências de fluxos de água subterrânea na principal cordilheira fraturada. A topologia permite quantificar a densidade de fraturas conectadas dentro da zona de falha e sua relação com a circulação das águas subterrâneas. Os resultados do estudo destacam duas áreas em que a densidade de fraturas e nós conectados (Nc) é alta (>2.4 km/km2, 2.5 Nc/km2). Ambas as áreas estão topologicamente relacionadas às principais fontes da ZFP: Termas de Jahuel (vazão ~14.0 m3/h a 22 °C) e Termas El Corazón (vazão ~7.2 m3/h a 20 °C). O mapeamento em escala de afloramento revela que as águas subterrâneas têm fluxo de saída pelas fraturas NW–SE, o que é consistente com a orientação preferencial da rede de fraturas (N30–60W) dentro da ZFP. Os resultados indicam que falhas oblíquas de base são estruturas discretas de alta permeabilidade que conduzem as águas subterrâneas através da Frente Andina Ocidental, desde a Cordilheira Principal até os aquíferos aluviais adjacentes (foco de recarga). Portanto, a visão hidrogeológica simplista da Frente Andina Ocidental (ou seja, limite impermeável) é parcialmente errônea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aliouache M, Wang X, Jourde H, Huang Z, Yao J (2019) Incipient karst formation in carbonate rocks: influence of fracture network topology. J Hydrol 575:824–837. https://doi.org/10.1016/J.JHYDROL.2019.05.082

    Article  Google Scholar 

  2. Armijo R, Rauld R, Thiele R, Vargas G, Campos J, Lacassin R, Kausel E (2010) The west Andean thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29(2):TC2007. https://doi.org/10.1029/2008TC002427

    Article  Google Scholar 

  3. Aishlin P, McNamara JP (2011) Bedrock infiltration and mountain block recharge accounting using chloride mass balance. Hydrol Process 25(12):1934–1948. https://doi.org/10.1002/hyp.7950

    Article  Google Scholar 

  4. Benavente O, Tassi F, Reich M, Aguilera F, Capecchiacci F, Gutiérrez F, Vaselli O, Rizzo A (2016) Chemical and isotopic features of cold and thermal fluids discharged in the southern volcanic zone between 32.5°S and 36°S: insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile. Chem Geol 420:97–113. https://doi.org/10.1016/J.CHEMGEO.2015.11.010

    Article  Google Scholar 

  5. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884. https://doi.org/10.1016/S0309-1708(02)00042-8

    Article  Google Scholar 

  6. Boyce D, Charrier R, Farias M (2020) The first Andean compressive tectonic phase: sedimentologic and structural analysis of mid-Cretaceous deposits in the Coastal Cordillera, Central Chile (32°50′S). Tectonics 39(2):e2019TC005825. https://doi.org/10.1029/2019TC005825

    Article  Google Scholar 

  7. Bresciani E, Cranswick RH, Banks EW, Batlle-Aguilar J, Cook PG, Batelaan O (2018) Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers. Hydrol Earth Syst Sci 22:1629–1648. https://doi.org/10.5194/hess-22-1629-2018

    Article  Google Scholar 

  8. Bustamante M, Lemus M, Cortés R, Vivallos J, Cáceres D, Wall R (2012) Exploración geológica para el fomento de la energía geotérmica: área de Jahuel, Región de Valparaiso [Geological exploration for the geothermal energy promotion: Jahuel area, Valparaiso Region]. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile

  9. Carter WD, Aguirre L (1965) Structural geology of Aconcagua Province and its relationship to the Central Valley graben, Chile. Geol Soc Am Bull 76(6):651–664. https://doi.org/10.1130/0016-7606(1965)76[651:SGOAPA]2.0.CO;2

    Article  Google Scholar 

  10. Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1–2):96–113. https://doi.org/10.1016/j.tecto.2009.02.038

    Article  Google Scholar 

  11. Cembrano J, Lavenu A, Yáñez G, Riquelme R, Garcia M, González Gm Hérail G (2007) Neotectonics. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society of London 21-114. https://doi.org/10.1144/GOCH.9

  12. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society of London 21-114. https://doi.org/10.1144/GOCH.3

  13. Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277. https://doi.org/10.1007/s10040-002-0188-6

    Article  Google Scholar 

  14. Daniele L, Cannatelli C, Buscher JT, Bonatici G (2019) Chemical composition of Chilean bottled waters: anomalous values and possible effects on human health. Sci Total Environ 689:526–533. https://doi.org/10.1016/j.scitotenv.2019.06.165

    Article  Google Scholar 

  15. Darwin C (1839) The voyage of the Beagle. Wordsworth Classics, Knoxville, TN, 733 pp

  16. de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17. https://doi.org/10.1007/s10040-001-0171-7

    Article  Google Scholar 

  17. DGA (2015) Determinación de la Disponibilidad de Aguas Subterráneas en el Valle del Río Aconcagua [Determining the groundwater availability in the Aconcagua River Valley]. Dirección General de Aguas (DGA), Santiago, Chile

  18. DGA (2016) Disponibilidad de Recursos Hídricos para el Otorgamiento de Derechos de Aprovechamiento de Aguas Subterráneas en el Valle del Aconcagua: sectores hidrogeológicos de San Felipe, Putaendo, Panquehue, Catemu y Llay Llay [Water resources availability for granting groundwater rights in the aconcagua valley: hydrogeological sectors of San Felipe, Putaendo, Panquehue, Catemu and Llay Llay]. Dirección General de Aguas (DGA), Santiago, Chile

  19. DGA (2019a) Proyecto actualización de la modelación hidrológica integrada del Aconcagua [Updating project of the Aconcagua integrated hydrological modeling]. Dirección General de Aguas (DGA), Santiago, Chile

  20. DGA(019b) Inventario Público de Información Hidrológica y Meteorológica [Public inventory of hydrological and meteorological information]. Dirección General de Aguas (DGA), Santiago, Chile. https://dga.mop.gob.cl. Accessed August 25th, 2019

  21. Dimmen V, Rotevatn A, Peacock DCP, Nixon CW, Nærland K (2017) Quantifying structural controls on fluid flow: insights from carbonate-hosted fault damage zones on the Maltese Islands. J Struct Geol 101:43–57. https://doi.org/10.1016/j.jsg.2017.05.012

    Article  Google Scholar 

  22. Farías M, Comte D, Charrier R, Martinod J, David C, Tassara A, Tapia F, Fock A (2010) Crustal-scale structural architecture in Central Chile based on seismicity and surface geology: implications for Andean mountain building. Tectonics 29(3):TC3006. https://doi.org/10.1029/2009TC002480

    Article  Google Scholar 

  23. Fernández E, Grilli A, Alvarez D, Aravena R (2017) Evaluation of nitrate levels in groundwater under agricultural fields in two pilot areas in Central Chile: a hydrogeological and geochemical approach. Hydrol Process 31(1):1206–1224. https://doi.org/10.1002/hyp.11103

    Article  Google Scholar 

  24. Fournillon A, Abelard S, Viseur S, Arfib B, Borgomano J (2012) Characterization of karstic networks by automatic extraction of geometrical and topological parameters: comparison between observations and stochastic simulations. Geol Soc Lond Spec Publ 370:247–264. https://doi.org/10.1144/SP370.8

    Article  Google Scholar 

  25. Garreaud RD, Alvarez-Garreton C, Barichivich J, Boisier JP, Christie D, Galleguillos M, LeQuesne C, McPhee J, Zambrano-Bigiarini M (2017) The 2010–2015 megadrought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21(12):6307–6327. https://doi.org/10.5194/hess-21-6307-2017

    Article  Google Scholar 

  26. Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D (2019) The Central Chile Mega Drought (2010–2018): a climate dynamics perspective. Int J Climatol. https://doi.org/10.1002/joc.6219

  27. Giambiagi LB, Ramos VA, Godoy E, Alvarez PP, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22(4):1041. https://doi.org/10.1029/2001TC001354

    Article  Google Scholar 

  28. Gillespie J, Nelson ST, Mayo AL, Tingey DG (2012) Why conceptual groundwater flow models matter: a trans-boundary example from the arid Great Basin, western USA. Hydrogeol J 20(6):1133–1147. https://doi.org/10.1007/s10040-012-0848-0

    Article  Google Scholar 

  29. Gleason CL, Frisbee MB, Rademacher LK, Sada DW, Meyers ZP (2020) Hydrogeology of desert springs in the Panamint range, California, USA: identifying the sources and amount of recharge that support spring flow. Hydrol Process 34(3):730–748. https://doi.org/10.1002/hyp.13621

    Article  Google Scholar 

  30. Healy R, Scanlon BR (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge, 257 pp. https://doi.org/10.1017/CBO9780511780745.002

  31. Hauser A (1997) Catastro y caracterización de las fuentes de aguas minerales y termales de Chile (Survey and characterization of mineral and thermal water in Chile). Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile

  32. Jara P, Charrier R (2014) New stratigraphical and geochronological constraints for the Mezo-Cenozoic deposits in the high Andes of Central Chile between 32° and 32°30′S: structural and palaeogeographic implications. Andean Geol 41(1):174–209. https://doi.org/10.5027/andgeoV41n1-a07

    Article  Google Scholar 

  33. Jing L, Stephansson O (1997) Network topology and homogenization of fractured rocks. In: Jamtveit B, Yardley BWD (eds) Fluid flow and transport in rocks. Springer, Heidelberg, Germany, pp 191–202. https://doi.org/10.1007/978-94-009-1533-6_11

  34. Jordan T, Herrera C, Kirk-Lawlor N, Godfrey L (2015) Architecture of the aquifers of the Calama Basin, Loa catchment basin, northern Chile. Geosphere 11(5):1438–1474. https://doi.org/10.1130/GES01176.1

    Article  Google Scholar 

  35. Kebede S, Travi Y, Asrat A, Alemayehu T, Ayenew T, Tessema Z (2008) Groundwater water origin and flow along selected transects in Ethiopian rift volcanic aquifers. Hydrogeol J 16(1):55–73. https://doi.org/10.1007/s10040-007-0210-0

    Article  Google Scholar 

  36. Maillot J, Davy P, Le Goc R, Darcel C, de Dreuzy JR (2016) Connectivity, permeability and channeling in randomly-distributed and kinematically-defined discrete fracture network models. Water Resour Res. https://doi.org/10.1002/2016WR018973

  37. Makel GH (2007) The modelling of fractured reservoirs: constraints and potential for fracture network geometry and hydraulics analysis. Geol Soc Lond Spec Publ 292:375–403. https://doi.org/10.1144/SP292.21

    Article  Google Scholar 

  38. Manzocchi T (2002) The connectivity of two-dimensional networks of spatially correlated fractures. Water Resour Res 38(9):1-1–1-20. https://doi.org/10.1029/2000WR000180

  39. Markovich KH, Manning AH, Condon LE, McIntosh JD (2019) Mountain-block recharge: a review of ccurrent understanding. Water Resources Res 55. https://doi.org/10.1029/2019WR025676

  40. Massuel S, Riaux J (2017) Groundwater overexploitation: why is the red flag waved? Case study on the Kairouan plain aquifer (central Tunisia). Hydrogeol J 25:1607–1620. https://doi.org/10.1007/s10040-017-1568-2

    Article  Google Scholar 

  41. Muñoz JF, Fernández B, Escauriaza C (2003) Evaluation of groundwater availability and sustainable extraction rate for the upper Santiago Valley aquifer, Chile. Hydrogeol J 11(6):687–700. https://doi.org/10.1007/s10040-003-0292-2

    Article  Google Scholar 

  42. Muñoz E, Arumí JL, Wagener T, Oyarzún R, Parra V (2016) Unravelling complex hydrogeological processes in Andean basins in south-central Chile: an integrated assessment to understand hydrological dissimilarity. Hydrol Process 30(26):4934–4943. https://doi.org/10.1002/hyp.11032

    Article  Google Scholar 

  43. Nelson ST, Mayo AL (2014) The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States. Hydrogeol J 22(4):807–828. https://doi.org/10.1007/s10040-014-1104-6

    Article  Google Scholar 

  44. Nyberg B, Nixon CW, Sanderson DJ (2018) NetworkGT: a GIS tool for geometric and topological analysis of two-dimensional fracture networks. Geosphere 14(4):1618–1634. https://doi.org/10.1130/GES01595.1

    Article  Google Scholar 

  45. Ohlanders N, Rodriguez M, McPhee J (2013) Stable water isotope variation in a central Andean watershed dominated by glacier and snowmelt. Hydrol Earth Syst Sci 17:1035–1050. https://doi.org/10.5194/hess-17-1035-2013

    Article  Google Scholar 

  46. Oyarzún R, Barrera F, Salazar P, Maturana H, Oyarzún J, Aguirre E, Alvarez P, Jourde H, Kretschmer N (2014) Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeol J 22(8):1857–1873. https://doi.org/10.1007/s10040-014-1170-9

    Article  Google Scholar 

  47. Oyarzún R, Zambra S, Maturana H, Oyarzún J, Aguirre E, Kretschmer N (2016) Chemical and isotopic assessment of surface water–shallow groundwater interaction in the arid Grande River basin, north-central Chile. Hydrol Sci J 61(12):2193–2204. https://doi.org/10.1080/02626667.2015.1093635

    Article  Google Scholar 

  48. Oyarzún R, Oyarzún J, Fairley JP, Núñez J, Gómez N, Arumí JL, Maturana H (2017) A simple approach for the analysis of the structural-geologic control of groundwater in an arid rural, mid-mountain, granitic and volcanic-sedimentary terrain: the case of the Coquimbo region, north-central Chile. J Arid Environ 142:31–35. https://doi.org/10.1016/J.JARIDENV.2017.03.003

    Article  Google Scholar 

  49. Peng TR, Zhan WJ, Tong LT, Chen CT, Liu TS, Lu WC (2018) Assessing the recharge process and importance of montane water to adjacent tectonic valley-plain groundwater using a ternary end-member mixing analysis based on isotopic and chemical tracers. Hydrogeol J 26(6):2041–2055. https://doi.org/10.1007/s10040-018-1741-2

    Article  Google Scholar 

  50. Piquer J, Hollings P, Rivera O, Cooke DR, Baker M, Testa F (2017) Along-strike segmentation of the Abanico Basin, Central Chile: new chronological, geochemical and structural constraints. Lithos 268–271:174–197. https://doi.org/10.1016/j.lithos.2016.10.025

    Article  Google Scholar 

  51. Piquer J, Yañez G, Rivera O, Cooke DR (2019) Long-lived crustal damage zones associated with fault intersections in the high Andes of Central Chile. Andean Geol 46:223–239. https://doi.org/10.5027/andgeoV46n2-3106

    Article  Google Scholar 

  52. Rauld R (2011) Deformación cortical y peligro sísmico asociado a la falla San Ramón en el Frente Cordillerano de Santiago, Chile Central (33°S). PhD Thesis, Universidad de Chile, Santiago, Chile

  53. Ribeiro L, Kretschmer N, Nascimiento J, Buxo A, Rötting T, Soto G, Señoret M, Oyarzún J, Maturana H, Oyarzún R (2015) Evaluating piezometric trends using the Mann-Kendall test on the alluvial aquifers of the Elqui River basin, Chile. Hydrol Sci J 60(10):1840–1852. https://doi.org/10.1080/02626667.2014.945936

    Article  Google Scholar 

  54. Rivano S., Sepúlveda P., Boric R. & Espiñeira D. 1993. Hojas Quillota y Portillo, Escala 1:250.000 [Geological mapping of the Quillota-Portillo áreas, scale: 1:250,000]. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile

  55. Rivera D, Godoy-Faúndez A, Lillo M, Alvez A, Delgado V, Gonzalo-Martín C, Menasalvas E, Costumero R, García-Pedrero A (2016) Legal disputes as a proxy for regional conflicts over water rights in Chile. J Hydrol 535:36–45. https://doi.org/10.1016/j.jhydrol.2016.01.057

    Article  Google Scholar 

  56. Rojas R, Dassargues A (2007) Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeol J 15(3):537–551. https://doi.org/10.1007/s10040-006-0084-6

    Article  Google Scholar 

  57. Ruiz-Pereira SF, Veetil BK (2019) Glacier decline in the Central Andes (33°S): context and magnitude from satellite and historical data. J S Am Earth Sci 94:102249. https://doi.org/10.1016/j.jsames.2019.102249

    Article  Google Scholar 

  58. Salas I, Herrera C, Luque JA, Delgado J, Urrutia J, Jordan T (2016) Recent climatic events controlling the hydrological and the aquifer dynamics at arid areas: the case of Huasco River watershed, northern Chile. Sci Total Environ 571:178–194. https://doi.org/10.1016/j.scitotenv.2016.07.132

    Article  Google Scholar 

  59. Sævik PN, Nixon CW (2017) Inclusion of topological measurements into analytic estimates of effective permeability in fractured media. Water Resour Res 53(11):9424–9443. https://doi.org/10.1002/2017WR020943

    Article  Google Scholar 

  60. Sanderson DJ, Nixon CW (2015) The use of topology in fracture network characterization. J Struct Geol 72:56–66. https://doi.org/10.1016/j.jsg.2015.01.005

    Article  Google Scholar 

  61. Sanderson DJ, Nixon CW (2018) Topology, connectivity and percolation in fracture networks. J Struct Geol 115:167–177. https://doi.org/10.1016/j.jsg.2018.07.011

    Article  Google Scholar 

  62. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370. https://doi.org/10.1002/hyp.6335

    Article  Google Scholar 

  63. SERNAGEOMIN. 2003. Mapa geológico de Chile 1:1.000.000 [The geological map of Chile, scale: 1:1,000,000]. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santiago, Chile

  64. Simmers I (1997) Groundwater recharge principles, problems and developments. In: Simmers I (ed) Recharge of phreatic aquifers in (semi-)arid areas. CRC, Boca Raton, FL, pp 1–18

  65. Taillefer A, Guillou-Frottier L, Soliva R, Magri F, Lopez S, Courrioux G, Millot R, Ladouche B, Le Goff E (2018) Topographic and faults control of hydrothermal circulation along dormant faults in an Orogen. Geochem Geophys Geosyst 19(12):4972–4995. https://doi.org/10.1029/2018GC007965

    Article  Google Scholar 

  66. Taucare M, Heuser G, Roquer T, Arancibia G, Daniele L, Morata D (2018) Structural control in the evolution of an Andean hydrothermal system: the case of Pocuro fault zone (32°35′S–33°00′S). XV Chilean Geological Congress, Concepción, Chile. https://doi.org/10.13140/RG.2.2.20870.42562

  67. Taucare M, Daniele L, Viguier B, Vallejos A, Arancibia G (2020) Groundwater resources and recharge processes in the Western Andean front of Central Chile. Sci Total Environ 722:137824. https://doi.org/10.1016/j.scitotenv.2020.137824

    Article  Google Scholar 

  68. Taylor RG, Favreau G, Scanlon BR, Villholth KG (2019) Topical collection: determining groundwater sustainability from long-term piezometry in sub-Saharan Africa. Hydrogeol J 27:443–446. https://doi.org/10.1007/s10040-019-01946-9

    Article  Google Scholar 

  69. Urrutia J, Jódar J, Medina A, Herrera C, Chong G, Urqueta H, Luque JA (2018) Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer in the Atacama Desert, northern Chile. Hydrogeol J 26(6):1989–2007. https://doi.org/10.1007/s10040-018-1740-3

    Article  Google Scholar 

  70. Valois R, MacDonell S, Núñez JH, Maureira-Cortés H (2020) Groundwater level trends and recharge event characterization using historical observed data in semi-arid Chile. Hydrol Sci J. https://doi.org/10.1080/02626667.2020.1711912

  71. Vargas G, Klinger Y, Rockwell TK, Forman SL, Rebolledo S, Baize S, Lacassin R, Armijo R (2014) Probing large intraplate earthquakes at the west flank of the Andes. Geology 42(12):1083–1086. https://doi.org/10.1130/G35741.1

    Article  Google Scholar 

  72. Veloso EE, Tardani D, Elizalde D, Godoy BE, Sánchez-Alfaro PA, Aron F, Reich M, Morata D (2019) A review of the geodynamic constraints on the development and evolution of geothermal systems in the Central Andean Volcanic Zone (18–28°Lat.S). Int Geol Rev 1–25. https://doi.org/10.1080/00206814.2019.1644678

  73. Viguier B, Jourde H, Yáñez G, Lira ES, Leonardi V, Moya CE, García-Pérez T, Maringue J, Lictevout E (2018) Multidisciplinary study for the assessment of the geometry, boundaries and preferential recharge zones of an overexploited aquifer in the Atacama Desert (Pampa del Tamarugal, northern Chile). J S Am Earth Sci 86:366–383. https://doi.org/10.1016/J.JSAMES.2018.05.018

    Article  Google Scholar 

  74. Viguier B, Daniele L, Jourde H, Leonardi V, Yañez G (2019) Changes in the conceptual model of the Pampa del Tamarugal aquifer: implications for central depression water resources. J S Am Earth Sci 94:102217. https://doi.org/10.1016/j.jsames.2019.102217

    Article  Google Scholar 

  75. Viswanathan HS, Hyman JD, Karra S, O’Malley D, Srinivasan S, Hagberg A, Srinivasan G (2018) Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resour Res 54(9):6085–6099. https://doi.org/10.1029/2017WR022368

    Article  Google Scholar 

  76. Walter B, Géraud Y, Hautevelle Y, Diraison M, Raisson F (2019) Fluid circulations at structural intersections through the Toro-Bunyoro Fault System (Albertine Rift, Uganda): a multidisciplinary study of a composite hydrogeological system. Geofluids. https://doi.org/10.1155/2019/8161469

  77. Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the Southwestern United States. Trans Am Geophys Union 9:113–137

  78. Yáñez G, Rivera O (2019) Crustal dense blocks in the fore-arc and arc region of Chilean ranges and their role in the magma ascent and composition: breaking paradigms in the Andean metallogeny. J S Am Earth Sci 93:51–66. https://doi.org/10.1016/j.jsames.2019.04.006

    Article  Google Scholar 

  79. Yáñez G, Muñoz M, Flores-Aqueveque V, Bosch A (2015) Gravity depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards. Andean Geol 42(2):147–172. https://doi.org/10.5027/andgeoV42n2-a01

    Article  Google Scholar 

  80. Zuluaga LF, Rotevatn A, Fumagalli A, Keilegavlen E, Nixon CW, Peacock DCP (2018) Outcrop fracture characterization for geothermal reservoirs: challenges in optimizing inputs for reservoir models. In: 6th European Geothermal Workshop, Strasbourg, France. https://doi.org/10.13140/RG.2.2.23833.88164

Download references

Acknowledgements

We are really grateful to Termas de Jahuel and Termas El Corazón for facilitating our field work. Thanks to Björn Nyberg for the online support concerning the usage of the NetworkGT tool, and Omara Fernández for the English revision.

Funding

Financial support was exclusively provided by Agencia Nacional de Investigación y Desarrollo de Chile (ANID) through the public funding programs: FONDECYT No. 1170569, FONDAP No. 15090013 (Centro de Excelencia en Geotermia de los Andes, CEGA), PCI-ITAL170012, ECOS-CONICYT No. 180055/C18U03 and also, by the project CAPTA-CORFO No. 19CTIGH-121349. The PhD studies of Taucare are funded by ANID-Beca Doctorado Nacional No. 21160325.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matías Taucare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taucare, M., Viguier, B., Daniele, L. et al. Connectivity of fractures and groundwater flows analyses into the Western Andean Front by means of a topological approach (Aconcagua Basin, Central Chile). Hydrogeol J (2020). https://doi.org/10.1007/s10040-020-02200-3

Download citation

Keywords

  • Springs
  • Fractured rock
  • Groundwater exploration
  • Chile