A three-dimensional stratigraphic model of the Mississippi River Delta, USA: implications for river deltaic hydrogeology

Modèle stratigraphique tridimensionnel du delta du Mississippi, États-Unis: implications pour l’hydrogéologie deltaïque du fleuve

Un modelo estratigráfico tridimensional del Delta del Río Mississippi, EEUU: implicancias en la hidrogeología del delta en el río

美国密西西比河三角洲的三维地层模型:对三角洲水文地质学的启示

Um modelo estratigráfico tridimensional do Delta do Rio Mississippi, EUA: implicações para a hidrogeologia fluvial deltaica

Abstract

A three-dimensional stratigraphic model was constructed of the upper 50 m of the Mississippi River Delta, southeastern USA. The model is used to understand hydrogeological connections among the Mississippi River, adjacent interdistributary bays and groundwater systems, and to understand how stratigraphic settings affect potential anthropically induced subsidence and erosion in the region. This study uses 619 geotechnical borings throughout the area along with the multiple-indicator natural neighbor (MINN) interpolation method to construct the model. Based on available data, the study focused on the Mississippi River reach from Head of Passes (river mouth) to Jesuit Bend (108 km upstream), covering an area of approximately 1,800 km2 and ranging in elevation from 3 to −46 m. The model shows typical basal coarse-grained sand bodies overlain by 10-m-thick blanket clay, which is interbedded frequently with silty and sandy sediments and occasionally with peat and organic clay. Sands are most abundant between elevations −10 and −35 m. The Mississippi River main channel incises the underlying sands, thereby providing pathways for river–groundwater exchange. Increased hydrologic loads may propagate along the flow paths potentially giving rise to high pore-water pressure and a resultant increase in land subsidence and thus local erosion of natural and local flood-control levees. This method of analysis may apply to other deltaic regions similarly subject to anthropically accelerated subsidence and erosion.

Résumé

Un modèle stratigraphique tridimensionnel a été construit sur les 50 m supérieurs du delta du fleuve Mississippi, dans le sud-est des États-Unis. Ce modèle est utilisé pour comprendre les connexions hydrogéologiques entre le fleuve Mississippi, les baies inter-distributaires adjacentes et les eaux souterraines et pour comprendre comment le contexte stratigraphique affecte l’affaissement et l’érosion anthropiques potentiels dans la région. Cette étude utilise 619 forages géotechniques répartis sur la zone, associés à une méthode d’interpolation par voisins naturels à indicateurs multiples pour construire le modèle. En fonction des données disponibles, l’étude s’est concentrée sur le tronçon du fleuve Mississippi allant de Head of Passes (l’embouchure) à Jesuit Bend (108 km en amont), qui couvre une superficie d’environ 1,800 km2 et dont l’altitude varie de 3 à −46 m. Le modèle montre des zones basales typiques composées de sable grossier et recouvertes de bancs d’argile de 10 m d’épaisseur, comportant fréquemment des intercalations de limons et sables et occasionnellement de la tourbe et de l’argile organique. Les sables sont plus abondants entre −10 et −35 m d’altitude. Le chenal principal du fleuve Mississippi incise les sables sous-jacents, favorisant ainsi les échanges nappe−rivière. L’augmentation des charges hydrauliques peut se propager le long des axes de circulation et potentiellement générer une pression élevée de l’eau interstitielle entrainant une augmentation de l’affaissement des terres et par conséquent une érosion locale des digues naturelles ou de celles localement destinées au contrôle des crues. Cette méthode d’analyse peut s’appliquer à d’autres régions deltaïques également soumises à un affaissement et à une érosion anthropiques accélérés.

Resumen

Se elaboró un modelo estratigráfico tridimensional de los 50 m superiores del Delta del Río Mississippi, al sudeste de los Estados Unidos. El modelo se utiliza para comprender las conexiones hidrogeológicas entre el río Mississippi, las bahías adyacentes y los sistemas de aguas subterráneas, y para comprender cómo los escenarios estratigráficos afectan a la posible subsidencia y erosión inducidas por el hombre en la región. Este estudio utiliza 619 perforaciones geotécnicas en toda la zona junto con el método de interpolación de vecinos naturales con indicadores múltiples (MINN) para construir el modelo. Sobre la base de los datos disponibles, el estudio se centró en el tramo del río Mississippi que va desde Head of Passes (desembocadura del río) hasta Jesuit Bend (108 km río arriba), que abarca una superficie de aproximadamente 1,800 km2 y cuya elevación oscila entre 3 y −46 m. El modelo muestra típicos cuerpos de arena basal de grano grueso superpuestos por un manto de arcilla de 10 m de espesor, que se intercala frecuentemente con sedimentos limosos y arenosos y ocasionalmente con turba y arcilla orgánica. Las arenas son más abundantes entre las elevaciones de −10 m y −35 m. El canal principal del río Mississippi incide en las arenas subyacentes, proporcionando así vías para el intercambio de aguas subterráneas del río. El aumento de las cargas hidráulicas puede propagarse a lo largo de las trayectorias del flujo, lo que puede dar lugar a una elevada presión del agua de los poros y al consiguiente aumento de la subsidencia del terreno y, por lo tanto, a la erosión local de los albardones naturales y locales que controlan las crecidas. Este método de análisis puede aplicarse a otras regiones del deltaicas sometidas de manera similar a subsidencia y erosión de origen antrópico.

摘要

本研究建立了美国东南部密西西比河三角洲上游上部50米的三维地层模型。该模型用于了解密西西比河、相邻的分流湾和地下水系统之间的水文地质联系,并探知地层环境如何影响该地区潜在的人为引起的沉降和侵蚀。利用研究区619个工程钻孔,用多指标自然邻域(MINN)插值方法来构建模型。根据现有的资料,研究关注从Head of Passes(河口)到Jesuit Bend (上游108公里)的密西西比河河段,覆盖面积约1,800 km2,海拔从3 m到−46 m不等。该模型显示典型的基底粗粒砂体上覆10 m厚的层状粘土,层间常夹有粉质和砂质沉积物,偶有泥炭和有机粘土。砂层主要在海拔−10 m和−35 m之间。密西西比河主河道切割底层的砂层,从而为河流−地下水交换提供了通道。增加的水文负荷可能沿水流路径传播并增加孔隙水压力,从而导致地面沉降增加,进而造成自然和当地防洪堤坝的局部侵蚀。这种分析方法可能适用于其他同样受到人为加速沉降和侵蚀的三角洲地区。

Resumo

Um modelo estratigráfico tridimensional foi construído nos 50 m superiores do Delta do Rio Mississippi, sudeste dos EUA. O modelo é usado para entender as conexões hidrogeológicas entre o Rio Mississippi, as baías interdistributárias adjacentes e os sistemas de água subterrânea, e para entender como as configurações estratigráficas afetam a subsidência e a erosão potenciais induzidas antropicamente na região. Este estudo utiliza 619 furos geotécnicos em toda a área, juntamente com o método de interpolação de vizinho natural de múltiplos indicadores (VNMI) para construir o modelo. Com base nos dados disponíveis, o estudo concentrou-se no alcance do Rio Mississippi, desde a Cabeça dos Passes (foz do rio) até a Curva dos Jesuítas (108 km a montante), cobrindo uma área de aproximadamente 1,800 km2 e variando em altitude de 3 a −46 m. O modelo mostra corpos típicos de areia de grão grosseiro basal revestidos por argila de 10 m de espessura, que é frequentemente intercalada com sedimentos siltosos e arenosos e, ocasionalmente, com turfa e argila orgânica. As areias são mais abundantes entre as elevações −10 me −35 m. O canal principal do Rio Mississippi perfura as areias subjacentes, fornecendo caminhos para as trocas entre rios e águas subterrâneas. Cargas hidrológicas aumentadas podem se propagar ao longo dos caminhos de fluxo, potencialmente causando alta pressão da água dos poros e um aumento resultante na subsidência de terreno e, portanto, erosão local dos diques naturais e locais de controle de enchentes. Este método de análise pode se aplicar a outras regiões deltaicas, sujeitas de maneira semelhante a subsidência e erosão antropicamente aceleradas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alabert FG (1987) Stochastic imaging of spatial distributions using hard and soft information. PhD Thesis, Stanford University Press, Stanford, CA

  2. Allison MA, Demas CR, Ebersole BA, Kleiss BA, Little CD, Meselhe EA, Powell NJ, Pratt TC, Vosburg BM (2012) A water and sediment budget for the lower Mississippi–Atchafalaya River in flood years 2008–2010: implications for sediment discharge to the oceans and coastal restoration in Louisiana. J Hydrol 432–433:84–97. https://doi.org/10.1016/j.jhydrol.2012.02.020

    Article  Google Scholar 

  3. Allison M, Yuill BT, Törnqvist T, Amelung F, Dixon T, Erkens G, Stuurman R, Jones C, Milne G, Steckler M (2016) Global risks and research priorities for coastal subsidence. Eos Trans Am Geophys Union 97(19):22–27. https://doi.org/10.1029/2016EO055013

    Article  Google Scholar 

  4. Allison MA, Ramirez MT, Meselhe EA (2014) Diversion of Mississippi River water downstream of New Orleans, Louisiana, USA to maximize sediment capture and ameliorate coastal land loss. Water Resour Manag 28(12):4113–4126. https://doi.org/10.1007/s11269-014-0731-y

    Article  Google Scholar 

  5. ASTM International (1985) Standard practice for classification of coils for engineering purposes (unified soil classification system). Annual Book of ASTM Standards, West Conshohocken, PA, pp 249–260

  6. Bentley SJ, Blum MD, Maloney J, Pond L, Paulsell R (2016) The Mississippi River source-to-sink system: perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth Sci Rev 153:139–174. https://doi.org/10.1016/j.earscirev.2015.11.001

    Article  Google Scholar 

  7. Beucher H, Renard D (2016) Truncated Gaussian and derived methods. C R Geosci 348(7):510–519. https://doi.org/10.1016/j.crte.2015.10.004

    Article  Google Scholar 

  8. Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491. https://doi.org/10.1038/ngeo553

    Article  Google Scholar 

  9. Bomer EJ, Bentley SJ, Hughes JE, Wilson CA, Crawford F, Xu K (2019) Deltaic morphodynamics and stratigraphic evolution of middle Barataria Bay and middle Breton Sound regions, Louisiana, USA: implications for river-sediment diversions. Estuar Coast Shelf Sci 224:20–33. https://doi.org/10.1016/j.ecss.2019.03.017

    Article  Google Scholar 

  10. Boriah S, Chandola V, Kumar V (2008) Similarity measures for categorical data: a comparative evaluation. Proceedings of the SIAM International Conference on Data Mining, SDM 2008, Atlanta, GA, April 24–26, 2008. https://doi.org/10.1137/1.9781611972788.22

  11. Bourne J (2000) Louisiana’s vanishing wetlands: going, going. Science 289(5486):1860–1863. https://doi.org/10.1126/science.289.5486.1860

    Article  Google Scholar 

  12. Briaud J-L (2013) Geotechnical engineering: unsaturated and saturated soils. Wiley, Chichester, UK

  13. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2):498–543. https://doi.org/10.1016/j.scitotenv.2006.05.009

    Article  Google Scholar 

  14. Cable JE, Burnett WC, Chanton JP, Weatherly GL (1996) Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth Planet Sci Lett 144(3):591–604. https://doi.org/10.1016/S0012-821X(96)00173-2

    Article  Google Scholar 

  15. Cable JE, Burnett WC, Chanton JP, Corbett DR, Cable PH (1997) Field evaluation of seepage meters in the coastal marine environment. Estuar Coast Shelf Sci 45(3):367–375. https://doi.org/10.1006/ecss.1996.0191

    Article  Google Scholar 

  16. Carle SF (1999) T-PROGS: Transition probability geostatistical software. University of California, Davis, CA, 84 pp

  17. Chamberlain EL, Törnqvist TE, Shen Z, Mauz B, Wallinga J (2018) Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci Adv 4(4). https://doi.org/10.1126/sciadv.aar4740

  18. CPRA (2012) Louisiana’s Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority of Louisiana, Baton Rouge, LA

  19. CPRA (2017) Louisiana’s Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority of Louisiana, Baton Rouge, LA

  20. CPRA (2019) Coastwide Reference Monitoring System. https://lacoast.gov/crms/. Accessed June 2020

  21. Coleman JM (1988) Dynamic changes and processes in the Mississippi River delta. Geol Soc Am Bull 100(7):999–1015. https://doi.org/10.1130/0016-7606(1988)100<0999:DCAPIT>2.3.CO;2

    Article  Google Scholar 

  22. Coleman JM, Gagliano SM (1964) Cyclic sedimentation in the Mississippi River deltaic plain. Gulf Coast Assoc Geol Soc Trans 14:67–80

    Google Scholar 

  23. Comerlati A, Ferronato M, Gambolati G, Putti M, Teatini P (2004) Saving Venice by seawater. J Geophys Res Earth Surf 109(F3). https://doi.org/10.1029/2004JF000119

  24. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

    Article  Google Scholar 

  25. Couvillion BR, Beck H, Schoolmaster D, Fischer M (2017) Land area change in coastal Louisiana (1932 to 2016). US Geol Surv Sci Invest Map 3381. https://doi.org/10.3133/sim3381

  26. Dail MB, Reide Corbett D, Walsh JP (2007) Assessing the importance of tropical cyclones on continental margin sedimentation in the Mississippi delta region. Cont Shelf Res 27(14):1857–1874. https://doi.org/10.1016/j.csr.2007.03.004

    Article  Google Scholar 

  27. Day JW, Giosan L (2008) Geomorphology: survive or subside? Nat Geosci 1(3):156–157. https://doi.org/10.1038/ngeo137

    Article  Google Scholar 

  28. Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF (2007) Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science 315(5819):1679–1684. https://doi.org/10.1126/science.1137030

    Article  Google Scholar 

  29. Deutsch CV, Tran TT (2002) FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems. Comput Geosci 28(4):525–535. https://doi.org/10.1016/S0098-3004(01)00075-9

    Article  Google Scholar 

  30. Dirichlet GL (1850) Uber die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen [About the reduction of positive quadratic forms with three indefinite integers]. J Reine Angew Math 140:209–227

  31. Dokka RK (2006) Modern-day tectonic subsidence in coastal Louisiana. Geology 34(4):281–284. https://doi.org/10.1130/G22264.1

    Article  Google Scholar 

  32. Elliott T (1974) Interdistributary bay sequences and their genesis. Sedimentology 21(4):611–622

    Article  Google Scholar 

  33. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Glob Planet Chang 50(1):63–82. https://doi.org/10.1016/j.gloplacha.2005.07.004

    Article  Google Scholar 

  34. Esposito CR, Shen Z, Törnqvist TE, Marshak J, White C (2017) Efficient retention of mud drives land building on the Mississippi Delta plain. Earth Surf Dynam 5(3):387–397. https://doi.org/10.5194/esurf-5-387-2017

    Article  Google Scholar 

  35. Fagherazzi S, Edmonds DA, Nardin W, Leonardi N, Canestrelli A, Falcini F, Jerolmack DJ, Mariotti G, Rowland JC, Slingerland RL (2015) Dynamics of river mouth deposits. Rev Geophys 53(3):642–672. https://doi.org/10.1002/2014RG000451

    Article  Google Scholar 

  36. Fisk HN (1944) Geological Investigation of the Alluvial Valley of the Lower Mississippi River. Mississippi River Commission, US Army Corps of Engineers, Vicksburg District, Vicksburg, MS, 78 pp

  37. Fisk HN (1961) Bar-finger sands of Mississippi Delta. AAPG Spec Vol SP 22: Geometry of Sandstone Bodies, American Association of Petroleum Geologists, Tulsa, OK, pp 22–52

  38. Fox GA, Wilson GV, Simon A, Langendoen EJ, Akay O, Fuchs JW (2007) Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf Process Landf 32(10):1558–1573. https://doi.org/10.1002/esp.1490

    Article  Google Scholar 

  39. Frazier DE, Osanik A (1969) Recent peat deposits: Louisiana coastal plain. Geol Soc Am Spec Pap 114:63–86

    Google Scholar 

  40. Frederick BC, Blum M, Fillon R, Roberts H (2019) Resolving the contributing factors to Mississippi Delta subsidence: past and present. Basin Res 31(1):171–190. https://doi.org/10.1111/bre.12314

    Article  Google Scholar 

  41. Georgiou IY, FitzGerald DM, Stone GW (2005) The impact of physical processes along the Louisiana coast. J Coast Res 44:72–89

    Google Scholar 

  42. Hogan J, van der Kamp G, Barbour S, Schmidt R (2006) Field methods for measuring hydraulic properties of peat deposits. Hydrol Process 20(17):3635–3649. https://doi.org/10.1002/hyp.6379

    Article  Google Scholar 

  43. Hooke JM (1999) Decades of change: contributions of geomorphology to fluvial and coastal engineering and management. Geomorphology 31(1):373–389. https://doi.org/10.1016/S0169-555X(99)00083-5

    Article  Google Scholar 

  44. Jang C-S, Chen S-K, Ching-Chieh L (2008) Using multiple-variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan. Hydrol Process 22:4477–4489. https://doi.org/10.1002/hyp.7037

    Article  Google Scholar 

  45. Jankowski KL, Törnqvist TE, Fernandes AM (2017) Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat Commun 8:14792. https://doi.org/10.1038/ncomms14792

    Article  Google Scholar 

  46. Jones KS (1998) A statistical interpretation of term specificity and its application in retrieval. In: Document retrieval systems, vol 3. In: Foundations of information science, Taylor Graham, London, pp 132–142

  47. Jorgensen DG (1980) Relationships between basic soils-engineering equations and basic ground-water flow equations. US Geological Survey. https://doi.org/10.3133/wsp2064

  48. Kearney MS, Riter JC, Turner RE (2011) Freshwater river diversions for marsh restoration in Louisiana: twenty-six years of changing vegetative cover and marsh area. Geophys Res Lett 38(16). https://doi.org/10.1029/2011GL047847

  49. Kim J (2016) Investigating groundwater inputs to Mississippi River Deltaic wetlands using spatial and temporal responses of the geochemical tracer, 222 Rn. PhD Thesis, The University of North Carolina, Chapel Hill, NC

  50. Kim W, Mohrig D, Twilley R, Paola C, Parker G (2009) Is it feasible to build new land in the Mississippi River Delta? Eos Trans Am Geophys Union 90(42):373–374. https://doi.org/10.1029/2009EO420001

    Article  Google Scholar 

  51. Kolb CR, Van Lopik JR (1966) Depositional environments of the Mississippi River deltaic plain: southeastern Louisiana. In: Deltas in their geologic framework, Houston Geological Society, Houston, TX, pp 17–61

  52. Kolker AS, Cable JE, Johannesson KH, Allison MA, Inniss LV (2013) Pathways and processes associated with the transport of groundwater in deltaic systems. J Hydrol 498:319–334. https://doi.org/10.1016/j.jhydrol.2013.06.014

    Article  Google Scholar 

  53. Kooi H (2000) Land subsidence due to compaction in the coastal area of the Netherlands: the role of lateral fluid flow and constraints from well-log data. Glob Planet Chang 27(1):207–222. https://doi.org/10.1016/S0921-8181(01)00067-4

    Article  Google Scholar 

  54. Kooi H, De Vries JJ (1998) Land subsidence and hydrodynamic compaction of sedimentary basins. Hydrol Earth Syst Sci Discuss 2(2/3):159–171. https://doi.org/10.5194/hess-2-159-1998

    Article  Google Scholar 

  55. Krest JM, Moore WS, Rama (1999) 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. Mar Chem 64(3):129–152. https://doi.org/10.1016/S0304-4203(98)00070-X

  56. Kulp MA (2000) Holocene stratigraphy, history, and subsidence: Mississippi River delta region, north-central Gulf of Mexico. PhD Thesis, University of Kentucky, Lexington, KY

  57. Leonards GA (1962) Foundation engineering. McGraw Hill, New York

  58. Lewis J, Brown G, Ayres S (2017) Investigation of discharge measurements of the Lower Mississippi River below Natchez, MS. US Army Corps of Engineers, Vicksburg, MS

  59. Li A, Tsai FT-C, Xu K, Wang J, White CM, Bentley SJ, Chen QJ (2019a) Modeling sediment texture of river-deltaic wetlands in the lower Barataria Bay and lower Breton sound, Louisiana, USA. Geo-Mar Lett 39(2):161–173. https://doi.org/10.1007/s00367-019-00566-2

    Article  Google Scholar 

  60. Li A, Jafari NH, Tsai FT-C (2019b) Modeling and comparing 3-D soil stratigraphy using subsurface borings and cone penetrometer tests in coastal Louisiana, USA. Georisk: assessment and management of risk for engineered systems and geohazards. https://doi.org/10.1080/17499518.2019.1637528

  61. Liang L, Hale D (2010) A stable and fast implementation of natural neighbor interpolation. CWP-657, Center for Wave Phenomena, Colorado School of Mines, Golden, CO

  62. Lin D (1998) An information-theoretic definition of similarity. In ICML ’98: Proceedings of the 15th International Conference on Machine Learning, San Francisco, CA, 1998. Morgan Kaufmann, Burlington, MA, pp 296–304

  63. Love M, Amante C, Eakins B, Taylor L (2010a) Digital elevation models of New Orleans, Louisiana: procedures, data sources and analysis. Report. National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, CO, 44 pp

  64. Love M, Caldwell R, Carignan K, Eakins B, Taylor L (2010b) Digital elevation models of New Orleans, Louisiana: procedures, data sources and analysis. Report. National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, CO, 22 pp

  65. Marini M, Felletti F, Beretta GP, Terrenghi J (2018) Three geostatistical methods for hydrofacies simulation ranked using a large borehole lithology dataset from the Venice Hinterland (NE Italy). Water 10(7). https://doi.org/10.3390/w10070844

  66. Meckel T, ten Brink US, Williams SJ (2006) Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys Res Lett 33(11). https://doi.org/10.1029/2006GL026300

  67. Meselhe EA, Georgiou I, Allison MA, McCorquodale JA (2012) Numerical modeling of hydrodynamics and sediment transport in lower Mississippi at a proposed delta building diversion. J Hydrol 472–473:340–354. https://doi.org/10.1016/j.jhydrol.2012.09.043

    Article  Google Scholar 

  68. Meselhe EA, Sadid KM, Allison MA (2016) Riverside morphological response to pulsed sediment diversions. Geomorphology 270:184–202. https://doi.org/10.1016/j.geomorph.2016.07.023

    Article  Google Scholar 

  69. Miner MD, Kulp MA, FitzGerald DM, Flocks JG, Weathers HD (2009) Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, south-central Louisiana, USA. Geo-Mar Lett 29(6):441–453. https://doi.org/10.1007/s00367-009-0156-4

    Article  Google Scholar 

  70. Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57(2):443–452. https://doi.org/10.2136/sssaj1993.03615995005700020026x

    Article  Google Scholar 

  71. Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci 2(1):59–88. https://doi.org/10.1146/annurev-marine-120308-081019

    Article  Google Scholar 

  72. Moore WS, Krest J (2004) Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya rivers and the Gulf of Mexico. Mar Chem 86(3):105–119. https://doi.org/10.1016/j.marchem.2003.10.001

    Article  Google Scholar 

  73. Mulcare DM (2004) NGS Toolkit, part 9: The National Geodetic Survey VERTCON Tool. Professional Surveyor Magazine. https://www.ngs.noaa.gov/TOOLS/Professional_Surveyor_Articles/VERTCON.pdf. Accessed June 2020

  74. Nakamura T, Nezasa Y, Cho Y-H, Ishihara R, Mizutani N (2014) An experimental study on the wave-induced topographic change in artificial shallows: focusing on the effects of pore-water pressure on sediment transport. Coast Eng J 56(02):1450008. https://doi.org/10.1142/S0578563414500089

    Article  Google Scholar 

  75. Naranjo-Fernández N, Guardiola-Albert C, Montero-González E (2019) Applying 3D Geostatistical simulation to improve the groundwater management modelling of sedimentary aquifers: the case of Doñana (southwest Spain). Water 11(1):39 https://doi.org/10.3390/w11010039

    Article  Google Scholar 

  76. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  77. Odeha IOA, McBratney AB, Chittleborough DJ (1994) Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63(3):197–214. https://doi.org/10.1016/0016-7061(94)90063-9

    Article  Google Scholar 

  78. Olariu C, Bhattacharya JP (2006) Terminal distributary channels and delta front architecture of river-dominated delta systems. J Sediment Res 76(2):212–233

    Article  Google Scholar 

  79. Pham HV, Tsai FT-C (2017) Modeling complex aquifer systems: a case study in Baton Rouge, Louisiana (USA). Hydrogeol J 25(3):601–625. https://doi.org/10.1007/s10040-016-1532-6

    Article  Google Scholar 

  80. Pizzuto JE, Schwendt AE (1997) Mathematical modeling of autocompaction of a Holocene transgressive valley-fill deposit, Wolfe Glade, Delaware. Geology 25(1):57–60. https://doi.org/10.1130/0091-7613(1997)025<0057:MMOAOA>2.3.CO;2

    Article  Google Scholar 

  81. Ritter A, Muñoz-Carpena R (2013) Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol 480:33–45

    Article  Google Scholar 

  82. Roberts HH (1997) Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. J Coast Res 13(3):605–627

    Google Scholar 

  83. Robertson Ian N, Riggs HR, Yim Solomon C, Young Yin L (2007) Lessons from hurricane Katrina storm surge on bridges and buildings. J Waterw Port Coast Ocean Eng 133(6):463–483. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(463)

    Article  Google Scholar 

  84. Sambridge M, Braun J, McQueen H (1995) Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophys J Int 122(3):837–857. https://doi.org/10.1111/j.1365-246X.1995.tb06841.x

    Article  Google Scholar 

  85. Saucier RT (1994) Geomorphology and Quarternary geologic history of the Lower Mississippi Valley, vol 2. Army Engineer Waterways Experiment Station, Geotechnical Lab, Vicksburg, MI

  86. Sawyer AH, Edmonds DA, Knights D (2015) Surface water–groundwater connectivity in deltaic distributary channel networks. Geophys Res Lett 42(23):10299–10306. https://doi.org/10.1002/2015GL066156

    Article  Google Scholar 

  87. Sibson R (1980) A vector identity for the Dirichlet tessellation. Math Proc Camb Philos Soc 87(1):151–155

    Article  Google Scholar 

  88. Sibson R (1981) A brief description of natural neighbour interpolation. In: V. Barnett (ed) Interpreting multivariate data. Wiley, Chichester, UK

  89. Smith JE, Bentley SJ, Snedden GA, White C (2015) What role do hurricanes play in sediment delivery to subsiding river deltas? Sci Rep 5:17582. https://doi.org/10.1038/srep17582

    Article  Google Scholar 

  90. Stanll C, Waltz D (1986) Toward memory-based reasoning. Commun ACM 29(12):1213–1228

    Article  Google Scholar 

  91. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720):376–380

    Article  Google Scholar 

  92. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681. https://doi.org/10.1126/science.1109454

    Article  Google Scholar 

  93. Taylor A (2017) Profiles of the top US agricultural ports. US Department of Agricultural, Agricultural Marketing Service, Washington, DC

  94. Teatini P, Gambolati G, Ferronato M, Settari A, Walters D (2011) Land uplift due to subsurface fluid injection. J Geodyn 51(1):1–16. https://doi.org/10.1016/j.jog.2010.06.001

    Article  Google Scholar 

  95. Telfeyan K, Breaux A, Kim J, Cable JE, Kolker AS, Grimm DA, Johannesson KH (2017) Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA. Mar Chem 192:32–48. https://doi.org/10.1016/j.marchem.2017.03.010

    Article  Google Scholar 

  96. Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage [Earth mechanics based on soil physics]. Deuticke, Leipzig, Germany

  97. Tornqvist TE, Wallace DJ, Storms JEA, Wallinga J, van Dam RL, Blaauw M, Derksen MS, Klerks CJW, Meijneken C, Snijders EMA (2008) Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat Geosci 1(3):173–176. https://doi.org/10.1038/ngeo129

    Article  Google Scholar 

  98. Tsai FT-C, Elshall AS (2013) Hierarchical Bayesian model averaging for hydrostratigraphic modeling: uncertainty segregation and comparative evaluation. Water Resour Res 49:5520–5536. https://doi.org/10.1002/wrcr.20428

    Article  Google Scholar 

  99. Tsai FT-C, Sun N-Z, Yeh WW-G (2005) Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems. J Hydrol 308(1):269–283. https://doi.org/10.1016/j.jhydrol.2004.11.004

    Article  Google Scholar 

  100. US Census Bureau (2011) Census 2010. In: US Census Bureau, Washington, DC

  101. Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques: deuxième mémoire—recherches sur les parallélloèdres primitifs [New applications of continuous parameters to the theory of quadratic forms: second memoires—research on primitive parallelohedra]. J Reine Angew Math 134:198–287

    Article  Google Scholar 

  102. Wamsley TV, Cialone MA, Smith JM, Ebersole BA, Grzegorzewski AS (2009) Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana. Nat Hazards 51(1):207–224. https://doi.org/10.1007/s11069-009-9378-z

    Article  Google Scholar 

  103. Wang H, Steyer GD, Couvillion BR, Rybczyk JM, Beck HJ, Sleavin WJ, Meselhe EA, Allison MA, Boustany RG, Fischenich CJ, Rivera-Monroy VH (2014) Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios. Estuar Coast Shelf Sci 138:57–68. https://doi.org/10.1016/j.ecss.2013.12.020

    Article  Google Scholar 

  104. Wang J, Xu K, Bentley SJ, White C, Zhang X, Liu H (2019) Degradation of the Plaquemines sub-delta and relative sea-level in eastern Mississippi deltaic coast during late Holocene. Estuar Coast Shelf Sci 227:1–10. https://doi.org/10.1016/j.ecss.2019.106344

    Article  Google Scholar 

  105. Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34(10):1284–1306. https://doi.org/10.1016/j.cageo.2008.02.012

    Article  Google Scholar 

  106. Wiberg PL, Sherwood CR (2008) Calculating wave-generated bottom orbital velocities from surface-wave parameters. Comput Geosci 34(10):1243–1262. https://doi.org/10.1016/j.cageo.2008.02.010

    Article  Google Scholar 

  107. Widodo S, Ibrahim A (2012) Estimation of primary compression index (CC) using physical properties of Pontianak soft clay. Int J Eng Res Appl 2:2232–2236

    Google Scholar 

  108. Wolstencroft M, Shen Z, Törnqvist TE, Milne GA, Kulp M (2014) Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: insights from geophysical modeling. J Geophys Res Solid Earth 119(4):3838–3856. https://doi.org/10.1002/2013JB010928

    Article  Google Scholar 

  109. Xu K, Bentley S, Robichaux P, Sha X, Yang H (2016) Implications of texture and erodibility for sediment retention in receiving basins of coastal Louisiana diversions. Water 8(1):26. https://doi.org/10.3390/w8010026

    Article  Google Scholar 

  110. Yu X, Li S, Li S (2018) Fluvial depositional system. In: Clastic hydrocarbon reservoir sedimentology. Springer, Cham, Switzerland, pp 353–415

  111. Yuill BT, Lavoie D, Reed DJ (2009) Understanding subsidence processes in coastal Louisiana. J Coast Res 54:23–36. https://doi.org/10.2112/SI54-012.1

    Article  Google Scholar 

  112. Yuill BT, Roig-Silva C, Walshire L (2013) Application of an alluvial architecture model to better understand seepage risk in floodplains. Eng Geol 160:110–124. https://doi.org/10.1016/j.enggeo.2013.04.003

    Article  Google Scholar 

  113. Yuill BT, Khadka AK, Pereira J, Allison MA, Meselhe EA (2016) Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function. Geomorphology 259:12–29. https://doi.org/10.1016/j.geomorph.2016.02.005

    Article  Google Scholar 

  114. Zhang S, Jia Y, Wen M, Wang Z, Zhang Y, Zhu C, Li B, Liu X (2017) Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows: ‘sub-bottom sediment pump action’. J Ocean Univ China 16(1):15–24. https://doi.org/10.1007/s11802-017-3042-0

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the US Geological Survey (Grant no. G16AP00056) through the Louisiana Water Resources Research Institute and by the Department of the Treasury under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012 (RESTORE Act) (Award no. RCEGR260003-01-00) through The Water Institute of the Gulf. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the Department of the Interior and the Department of the Treasury.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank T.-C. Tsai.

Appendix: nomenclature

Appendix: nomenclature

Abbreviation and symbol Description
CH High-plasticity clay
CL Low-plasticity clay
CL-ML Low-plasticity clay and silt
DEM digital elevation model
DEMNO Digital elevation models of New Orleans
DEMSL Digital elevation models of Southern Louisiana
CPRA Coastal Protection and Restoration Authority of Louisiana
GC Clayey gravel
GM Silty gravel
GP Poorly-graded gravel
GW Well-graded gravel
LL Liquid limit
MH High-plasticity silt
MINN Multiple-indicator natural neighbor
ML Low-plasticity silt
MRD Mississippi River Delta
MRDP Mississippi River Deltaic Plain
NAVD 88 North American Vertical Datum of 1988
NGVD 29 National Geodetic Vertical Datum of 1929
NN Natural neighbor interpolation
OH High-plasticity organics
OL Low-plasticity organics
PI Plasticity index
PT Peat
RK River kilometer
SC Clayey sand
SGD Submarine groundwater discharge
SGR Submarine groundwater recharge
SM Silty sand
SP Poorly graded gravel
SP-SM Poorly graded sand with silt
SW Well-graded sand
USACE United States Army Corps of Engineers
USCS Unified Soil Classification System

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, A., Tsai, F.T., Yuill, B.T. et al. A three-dimensional stratigraphic model of the Mississippi River Delta, USA: implications for river deltaic hydrogeology. Hydrogeol J (2020). https://doi.org/10.1007/s10040-020-02198-8

Download citation

Keywords

  • Numerical modeling
  • Coastal aquifers
  • Stratigraphy
  • Indicator interpolation
  • USA