Exploring farmers’ perceptions about their depleting groundwater resources using path analysis: implications for groundwater overdraft and income diversification

Examen de la perception des agriculteurs quant à l’épuisement de leurs ressources en eaux souterraines, sur la base d’une analyse des pistes causales: implications pour le déficit en eaux souterraines et la diversification des revenus

Estudio de las percepciones de los agricultores sobre el agotamiento de sus recursos de aguas subterráneas mediante el análisis de trayectos: consecuencias para la sobreexplotación de las aguas subterráneas y la diversificación de los beneficios

使用路径分析探究农民对其消耗的地下水资源的看法:对地下水过量开采和收入多元化的影响

Explorando as percepções dos agricultores sobre o rebaixamento das águas subterrâneas usando análise de caminhos: implicações para o saldo negativo de águas subterrâneas e a diversificação de renda

Abstract

Iran is among the world’s top five groundwater exploiters and, similar to many countries in the world, aquifers in Iran have been rapidly depleted over the past decades primarily as a result of groundwater use by farmers. This research was conducted to explore whether the perceptions of pistachio growers in Rafsanjan Plain, Iran (a global center for pistachio production), on the depleting groundwater resources have led to the conservation of the resources and/or income diversification. In addition, the association between these perceptions and factors representing knowledge of growers was examined. To this end, two path models were developed and tested using path analysis and logistic regression. The results indicate that growers who had more pessimistic perceptions of the groundwater resources in Rafsanjan were more likely to increase groundwater extraction; however, these growers were also more likely to seek external employment (income diversification). The final path models suggest attitudes toward groundwater conservation were the most important determinants of pumping behavior, while perceptions of the state of the groundwater were the most important determinants of income diversification. Whether Iranian policies to increase awareness of falling water tables could succeed in securing water conservation would depend on the ‘balance’ of these two forces—an increase in pumping with increased pessimism or a potential decrease in pumping through income diversification. The paper concludes with a discussion on the implications of the results for interventions aimed at changing not only the groundwater users’ decisions about groundwater use, but also their decisions about income diversification.

Résumé

L’Iran fait partie du top 5 mondial des utilisateurs d’eaux souterraines et, comme dans beaucoup de pays du monde, ses aquifères ont été rapidement épuisés durant les dernières décennies, ce qui est principalement le résultat de l’utilisation des eaux souterraines par les agriculteurs. La présente recherche a été conduite dans le but d’explorer si la perception qu’ont les producteurs de pistache de la Plaine de Rafsanjan en Iran (un centre mondial de la production de pistache) de la diminution des ressources en eaux souterraines a amené à la préservation des ressources en eaux souterraines et/ou à la diversification des revenus. En outre, la connexion entre ces perceptions et les éléments qui expriment les connaissances des agriculteurs a été examinée. A cette fin, deux modèles de cheminement ont été développés et testés en utilisant l’analyse par les pistes causales et la régression logistique. Les résultats montrent que les producteurs qui ont la perception la plus pessimiste des ressources en eaux souterraines risquaient plus d’accroître l’extraction des eaux souterraines; cependant ces producteurs étaient également les plus susceptibles de chercher un emploi extérieur (diversification des revenus). Les modèles de cheminement finaux suggèrent que l’attitude envers la conservation des eaux souterraines était le déterminant le plus important pour le comportement de pompage, tandis que la perception de l’état des eaux souterraines était le déterminant le plus important pour la diversification des revenus. Si les politiques iraniennes visant à accroître la sensibilisation à la baisse des nappes devaient réussir à garantir la conservation de l’eau, cela dépendrait de l’équilibre de ces deux forces—une augmentation du pompage avec un pessimisme accru ou une diminution potentielle du pompage grâce à la diversification des revenus. L’article se termine par une discussion à propos de l’implication des résultats sur les interventions visant un changement, non seulement de la décision des utilisateurs de l’eau concernant son utilisation mais aussi de leur décision concernant la diversification des revenus.

Resumen

El Irán está entre los cinco principales países que explotan aguas subterráneas y, al igual que muchos países del mundo, los acuíferos del Irán se han agotado rápidamente en los últimos decenios, principalmente como consecuencia del uso de aguas subterráneas por los agricultores. Esta investigación se llevó a cabo para explorar si las percepciones de los productores de pistachos de la llanura de Rafsanjan (Irán) (un centro mundial de producción de pistachos) sobre el agotamiento de los recursos de aguas subterráneas han llevado a la conservación de los recursos y/o a la modificación de los rendimientos. Además, se examinó la asociación entre esas percepciones y los factores que representan los conocimientos de los agricultores. Para ello, se desarrollaron y probaron dos modelos de trayectorias utilizando el análisis de trayectos y la regresión logística. Los resultados indican que los agricultores que tenían percepciones más pesimistas de los recursos de aguas subterráneas en Rafsanjan tenían más probabilidades de aumentar la extracción de aguas subterráneas; sin embargo, estos agricultores también tenían más probabilidades de buscar empleo externo (diversificación de los beneficios). Los modelos del trayecto final sugieren que las actitudes hacia la conservación de las aguas subterráneas fueron los determinantes más importantes del comportamiento del bombeo, mientras que las opiniones sobre el estado de las aguas subterráneas fueron los determinantes principales de la diversificación de los beneficios. El que las políticas iraníes para aumentar la conciencia de la disminución de las capas freáticas pudieran tener éxito en asegurar la conservación del agua dependería del “equilibrio” de estas dos fuerzas—un aumento del bombeo con un mayor pesimismo o una posible disminución del bombeo a través de la diversificación de los beneficios. El documento concluye con un debate sobre las consecuencias de los resultados para las intervenciones destinadas a modificar no sólo las decisiones de los usuarios de aguas subterráneas sobre su uso, sino también sus decisiones sobre la diversificación de los beneficios.

摘要

伊朗是世界前五个地下水开发利用的国家之一,与世界上许多国家一样,由于农民开采地下水,伊朗的含水层在过去几十年中迅速消耗。进行这项研究的目的是探究伊朗Rafsanjan平原(全球开心果生产中心)开​​心果种植者对地下水资源消耗的看法是否导致资源的保护和/或收入多元化。此外,还考察了这些看法与代表种植者知识的因素之间的联系。为此,使用路径分析和逻辑回归开发并测试了两个路径模型。结果表明,对Rafsanjan的地下水资源抱有更悲观认识的种植者更有可能增加地下水的开采。但是,这些种植者也更有可能寻找外部就业(收入多元化)。最终路径模型表明,对地下水保护的态度是开采行为的最重要决定因素,而对地下水状态的看法则是收入多元化的最重要决定因素。伊朗提高对地下水位下降认识的政策能否成功实现水保护将取决于这两种力量的“平衡”,即增加的悲观情绪导致开采量增加,或者通过收入多元化而可能减少开采量。本文最后讨论了结果对干预措施的意义,这些干预措施不仅旨在改变地下水用户对地下水开采的决定,而且还改变他们关于收入多元化的决定。

Resumo

O Irã está entre os cinco maiores usuários de águas subterrâneas do mundo e, como em muitos países do mundo, os aquíferos no Irã foram rapidamente rebaixados nas últimas décadas, principalmente pelo uso agrícola das águas subterrâneas. Esta pesquisa foi realizada para identificar se as percepções dos agricultores de pistache na planície de Rafsanjan, no Irã (centro global de produção de pistache) a respeito dos recursos hídricos subterrâneos levaram à conservação dos recursos e/ou diversificação de renda. Além disso, foi examinada a associação entre essas percepções e os fatores que representam o conhecimento dos agricultores. Para esse fim, dois modelos foram desenvolvidos e testados usando análise de caminhos e regressão logística. Os resultados indicam que os agricultores que tiveram percepções mais pessimistas dos recursos hídricos subterrâneos em Rafsanjan tinham maior probabilidade de aumentar a extração das águas subterrâneas; no entanto, esses agricultores também eram mais propensos a procurar emprego externo (diversificação de renda). Os modelos finais de caminho sugerem que as atitudes tomadas em relação à conservação das águas subterrâneas foram os principais determinantes no comportamento de bombeamento, enquanto as percepções sobre o estado das águas subterrâneas foram os determinantes mais importantes da diversificação de renda. O sucesso nas políticas iranianas para aumentar a conscientização sobre o rebaixamento dos lençóis freáticos para garantir a conservação da água dependeria do "equilíbrio" dessas duas forças—um aumento no bombeamento com maior pessimismo ou uma diminuição potencial no bombeamento pela diversificação de renda. O artigo conclui com uma discussão sobre as implicações dos resultados para intervenções destinadas a alterar não apenas as decisões dos usuários de água subterrânea sobre o uso da água subterrânea, mas também suas decisões sobre diversificação de renda.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10)

  2. Abdollahi M (2007) Economic study of possibility of new methods of water supply and demand in agricultural sector: a case study of pistachio areas in Rafsanjan City (in Persian). Quart J Res Constr 2:113–126

    Google Scholar 

  3. Ajzen I (2011) The theory of planned behavior: reactions and reflections. Psychol Health 26:1113–1127. https://doi.org/10.1080/08870446.2011.613995

    Article  Google Scholar 

  4. Alemu DS, Shea D (2019) A path analysis of diagnosis of organizational levels of functionality. Int J Educ Manag 33(7):1515–1525

    Article  Google Scholar 

  5. Anderson CL, Locker L, Nugent R (2002) Microcredit, social capital, and common pool resources. World Dev 30(1):95–105

    Article  Google Scholar 

  6. Anderson JC, Rungtusanatham M, Schroeder RG, Devaraj S (1995) A path analytic model of a theory of quality management underlying the Deming management method: preliminary empirical findings. Decis Sci 26(5):637–658

    Article  Google Scholar 

  7. Armijo M (2014) The four-year college pipeline and factors related to bachelor’s degree completion for high school graduates. Pennsylvania State University, State College, PA

  8. Arnold J E M (1998) Managing forests as common property (FAO Forestry Paper no. 136). FAO, Rome

  9. Below TB, Mutabazi KD, Kirschke D, Franke C, Sieber S, Siebert R, Tscherning K (2012) Can farmers’ adaptation to climate change be explained by socio-economic household-level variables?. Glob Environ Chang 22(1):223-235.

  10. Birkenholtz T (2009) Irrigated landscapes, produced scarcity, and adaptive social institutions in Rajasthan, India. Annu Assoc Am Geogr 99(1):118–137

    Article  Google Scholar 

  11. Blanco E, Lopez MC, Villamayor-Tomas S (2015) Exogenous degradation in the commons: field experimental evidence. Ecol Econ 120:430–439

    Article  Google Scholar 

  12. Bluemling B, Yang H, Mosler HJ (2010) Adoption of agricultural water conservation practices: a question of individual or collective behavior? The case of the North China plain. Outlook Agric 39(1):7–16

    Article  Google Scholar 

  13. Budescu DV, Rapoport A, Suleiman R (1995) Common pool resource dilemmas under uncertainty: qualitative tests of equilibrium solutions. Games Econ Behav 10(1):171–201

    Article  Google Scholar 

  14. Cerutti N, Schlüter A (2019) Resource changes: exogenous or endogenous, gradual or abrupt: experimental evidence. Int J Environ Stud 76(6):1004–1018

    Article  Google Scholar 

  15. Corder GW, Foreman DI (2011) Nonparametric statistics for non-statisticians. Wiley, New York

    Google Scholar 

  16. Cuadrado-Quesada G (2014) Groundwater governance and spatial planning challenges: examining sustainability and participation on the ground. Water Int 39(6):798–812

    Article  Google Scholar 

  17. Dalin C, Wada Y, Kastner T, Puma MJ (2017) Groundwater depletion embedded in Iinternational food trade. Nature 543(7647):700–704

    Article  Google Scholar 

  18. Dirks S (2019) On the determinants of risk and de pro-social preferences and their role in cooperation under social uncertainty. Wageningen University, Environmental Economics and Natural Resources Group, Wageningen, The Netherlands

    Google Scholar 

  19. Doll P, Mueller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720

    Article  Google Scholar 

  20. Eakin H, York A, Aggarwal R, Waters S, Welch J, Rubiños C, Smith-Heisters S, Bausch C, Anderies JM (2016) Cognitive and institutional influences on farmers’ adaptive capacity: insights into barriers and opportunities for transformative change in central Arizona. Reg Environ Chang 16(3):801–814

    Article  Google Scholar 

  21. Elahi M, Vakilpoor, M H, Najafi A H (2018) Effect of water pricing and allocation on management of groundwater resources in Kabudarahang plain. Iran J Water Res Agric 32 (2):267–283

  22. Elsawah S, Guillaume JH, Filatova T, Rook J, Jakeman AJ (2015) A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models. J Environ Manag 151:500–516

    Article  Google Scholar 

  23. Emadodin I, Reinsch T, Taube F (2019) Drought and desertification in Iran. Hydrol 6(3):66

    Article  Google Scholar 

  24. Farzaneh MR (2016) Institutional analysis of the Rafsanjan groundwater resource system affected by legal mechanisms (in Persian). PhD Thesis, Tarbiat Modares University, Iran

  25. Fishman R, Devineni N, Raman S (2015) Can improved agricultural water use efficiency save India’s groundwater? Environ Res Lett 10(8):084022

    Article  Google Scholar 

  26. Foster S, van der Gun J (2016) Groundwater governance: key challenges in applying the global framework for action. Hydrogeol J 24(4):749–752

    Article  Google Scholar 

  27. Gardner R, Ostrom E, Walker JM (1990) The nature of common-pool resource problems. Ration Soc 2(3):335–358

    Article  Google Scholar 

  28. Ghazavi R, Ramazani Sarbandi M (2017) Investigating the effect of changes in rainfall and groundwater abstraction on quantitative and qualitative changes in aquifer water (case study: Rafsanjan plain) (in Persian). Hydrogeomorphology 3(12):111–129

    Google Scholar 

  29. Gleeson T, Cuthbert M, Ferguson G, Perrone D (2020) Global groundwater sustainability, resources, and systems in the Anthropocene. Annu Rev Earth Planet Sci 48. https://doi.org/10.1146/annurev-earth-071719-055251

  30. Grapentine T (2000) Path analysis vs. structural equation modeling. Marketing Res 12(3):12–20

  31. Grossman HI, Mendoza J (2003) Scarcity and appropriative competition. Eur J Politic Econ 19(4):747–758

    Article  Google Scholar 

  32. Grothmann T, Patt A (2005) Adaptive capacity and human cognition: the process of individual adaptation to climate change. Glob Environ Change 15(3):199–213

    Article  Google Scholar 

  33. Gustafsson M, Biel A, Gärling T (1999) Overharvesting of resources of unknown size. Acta Psychol 103(1–2):47–64

    Article  Google Scholar 

  34. Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248

  35. Hashemi SM, Bagheri A, Marshall N (2017) Toward sustainable adaptation to future climate change: insights from vulnerability and resilience approaches analyzing agrarian system of Iran. Environ Dev Sustain 19(1):1–25

    Article  Google Scholar 

  36. Hashimoto Y, Kang J, Matsuyama N, Saigusa M (2012) Path analysis of phosphorus retention capacity in allophanic and non-allophanic andisols. Soil Sci Soc Am J 76(2):441–448

    Article  Google Scholar 

  37. Hassanshahi J, Sarkargar Ardakani A (2019) Quantifying geotechnical changes in the Rafsanjan plain in time series and finding out their causes using radar remote sensing techniques. J Radar Opt Remote Sens 2(1):71–81

    Google Scholar 

  38. Hayes AF (2018) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guilford, New York

    Google Scholar 

  39. Hornung C, Martin R, Fayol M (2017) General and specific contributions of RAN to reading and arithmetic fluency in first graders: a longitudinal latent variable approach. Front Psychol 8:1746. https://doi.org/10.3389/fpsyg.2017.01746

    Article  Google Scholar 

  40. IRNA (2017) Annual harvest of 570 million cubic meters of water from Rafsanjan’s aquifer. Available online at https://www.irna.ir/news/82573155/. Accessed April 4, 2020

  41. IRNA (2019) 11,000 hectares of pistachio orchards in Rafsanjan were equipped with drip irrigation. Available online at https://www.irna.ir/news/82951578/11. Accessed April 15, 2020

  42. Ishaya S, Abaje IB (2008) Indigenous people’s perception on climate change and adaptation strategies in Jema’a local government area of Kaduna state, Nigeria. J Geogr Reg Plan 1(8):138

    Google Scholar 

  43. ISNA (2019) 20% of Rafsanjan pistachio cultivation area is equipped with a new irrigation system. Available online at https://www.isna.ir/news/kerman-61857/20. Accessed April 15, 2020

  44. Jafari Mahdi Abad F, Abdollahi M, Mortazavi Mehdi Abad SM, Islami MR (2013) Investigating the impact of false estimation of costs and social benefits on water resources destruction case study: Rafsanjan plain in Kerman Province (in Persian). J Agric Econ Res 5(19):49–64

    Google Scholar 

  45. Jafari Mahdi Abad F, Abdollahi M, Islami MR (2016) Investigating the economic and social impacts of uncontrolled utilization of water resources Rafsanjan plain - Anar in Kerman Province (in Persian). Agric Dev Econ 93:193–221

    Google Scholar 

  46. Jager W, Janssen MA, Vlek CA (2002) How uncertainty stimulates over-harvesting in a resource dilemma: three process explanations. J Environ Psychol 22(3):247–263

    Article  Google Scholar 

  47. Jakeman A J, Barreteau O, Hunt R J, Rinaudo J. D, Ross A, Arshad M, Hamilton S (2016) Integrated groundwater management: an overview of concepts and challenges. In: Integrated groundwater management. Springer, Cham, Switzerland, pp 3–20

  48. Jamali Jaghdani T (2012) Demand for irrigation water from depleting groundwater resources: an econometricapproach. PhD Thesis, Georg-August-Universität Göttingen, Germany. http://hdl.handle.net/11858/00-1735-0000-000D-EF51-7. Accessed May 2020

  49. Jamali Jaghdani TJ, Brümmer B (2016) Determinants of water purchases by pistachio producers in an informal groundwater market: a case study from Iran. Water Policy 18(3):599–618

    Article  Google Scholar 

  50. Javanshah A, Salehi F, Abdollahi M (2003) Prioritizing irrigation methods and presenting the most economical way to optimally use agricultural water resources in pistachio orchards in Kerman Province (in Persian). Iran Pistachio Research Institute, Kerman Province Management and Planning Organization, Rafsanjan, Iran

  51. Jacobowitz W (2018) Burnout and resilience in psychiatric hospital care-givers: a cross-sectional study using mediation and path analyses. Public Health Open J 3(1):20–28. https://doi.org/10.17140/PHOJ-3-126

    Article  Google Scholar 

  52. Jia X, O’Connor D, Hou D, Jin Y, Li G, Zheng C, Ok YS, Tsang DCW, Luo J (2019) Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Sci Total Environ 672:551–562

    Article  Google Scholar 

  53. Karamouz M, Yazdi M S, Ahmadi B, Zahraie B (2011) A system dynamics approach to economic assessment of water supply and demand strategies. In: World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Palm Springs, CA, May 2011, pp 1194–1203

  54. Karimi P, Qureshi AS, Bahramloo R, Molden D (2012) Reducing carbon emissions through improved irrigation and groundwater management: a case study from Iran. Agric Water Manag 108:52–60

    Article  Google Scholar 

  55. Khairnar KY, Pokharkar VG, Kadam DYS (2019) Economic impact of red gram production technology on farm productivity and income in western Maharashtra. J Pharmacogn Phytochem 8(3):3005–3009

    Google Scholar 

  56. King JE (2007). Standardized coefficients in logistic regression. In: Annual meeting of the Southwest Educational Research Association, San Antonio, Texas, 2007, pp 7–10

  57. Kirby M, Mainuddin M, Khaliq T, Cheema MJM (2017) Agricultural production, water use and food availability in Pakistan: historical trends, and projections to 2050. Agric Water Manag 179:34–46

    Article  Google Scholar 

  58. Le Dang H, Li E, Nuberg I, Bruwer J (2014) Understanding farmers’ adaptation intention to climate change: a structural equation modelling study in the Mekong Delta, Vietnam. Environ Sci Policy 41:11–22

    Article  Google Scholar 

  59. Lieberman LJ, Houston-Wilson C, Kozub FM (2002) Perceived barriers to including students with visual impairments in general physical education. Adapt Phys Act Q 19(3):364–377

    Google Scholar 

  60. Liu CJ, Hao F (2020) The impact of social and ecological factors on environmentally responsible behavior. J Clean Prod 254:1–8

  61. Long K, Pijanowski BC (2017) Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales. Land Use Policy 69:502–511

    Article  Google Scholar 

  62. Madani K (2014) Water management in Iran: what is causing the looming crisis? J Environ Stud Sci 4(4):315–328

    Article  Google Scholar 

  63. Madani K, AghaKouchak A, Mirchi A (2016) Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iran Stud 49:997–1016

    Article  Google Scholar 

  64. Maldonado J H, Sánchez M, del Pilar R (2009) Does scarcity exacerbate the tragedy of the commons? Evidence from fishers’ experimental responses. Documento CEDE 2009-22, CEDE, Bogota, Colombia

  65. McAfee D, Doubleday ZA, Geiger N, Connell SD (2019) Everyone loves a success story: optimism inspires conservation engagement. BioScience 69(4):274–281

    Article  Google Scholar 

  66. Megdal SB (2018) Invisible water: the importance of good groundwater governance and management. NPJ Clean Water 1(1). https://doi.org/10.1038/s41545-018-0015-9

  67. Mehryar S, Sliuzas R, Sharifi A, van Maarseveen MF (2015) The water crisis and socio-ecological development profile of Rafsanjan township, Iran. WIT Trans Ecol Environ 199:271–285

    Article  Google Scholar 

  68. Mirnezami SJ, Bagheri A, Maleki A (2018) Inaction of society on the drawdown of groundwater resources: a case study of Rafsanjan plain in Iran. Water Altern 11(3):725–748

    Google Scholar 

  69. Mirshekar A, Madjdzadeh SM, Khayrandish M (2020) Spider wasps (Hymenoptera, Pompilidae) from the southeastern Iran, Kerman. J Insect Biodivers System 6(1):9–19

    Google Scholar 

  70. Mirzaei A, Saghafian B, Mirchi A, Madani K (2019) The groundwater–energy–food Nexus in Iran’s agricultural sector: implications for water security. Water 11(9):1835

    Article  Google Scholar 

  71. Mirzaei Khallilabadi HR, Chizari AH (2004) Determination of irrigation water consumption in pistachio production (a case study of Rafsanjan plain) (in Persian). Pajouhesh Sazandegi 17(62):43–49

    Google Scholar 

  72. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  73. Mitchell M, Curtis A, Sharp E, Mendham E (2012) Directions for social research to underpin improved groundwater management. J Hydrol 448:223–231

    Article  Google Scholar 

  74. Moench M (2007) When the well runs dry but livelihood continues: adaptive responses to groundwater depletion and strategies for mitigating the associated impacts. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution: opportunities and threats to development. CABI, Oxford, pp 173–192

    Google Scholar 

  75. Molle F, Closas A (2019) Groundwater governance. In: Encyclopedia of water. https://doi.org/10.1002/9781119300762.wsts0191

  76. Molle F, López-Gunn E, van Steenbergen F (2018) The local and national politics of groundwater overexploitation. Water Altern 11(3):445

    Google Scholar 

  77. Moghimi Benhangi S, Bagheri A, Abolhassani L (2017) Assessment of institutional social learning capacity with a reference to learning loops in the level of agricultural water users, case study: Rafsanjan study area (in Persian). Iran Water Resour Res J 13(3):17–32

    Google Scholar 

  78. Moridi A (2017) State of water resources in Iran. Int J Hydrol 1(4):11–114

    Article  Google Scholar 

  79. Mukherji A, Shah T (2005) Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeol J 13(1):328–345

    Article  Google Scholar 

  80. Nabavi E (2017) (ground) water governance and legal development in Iran, 1906–2016. Middle East Law Gov 9(1):43–70

    Article  Google Scholar 

  81. Nabavi E (2018) Failed policies, falling aquifers: unpacking groundwater overabstraction in Iran. Water Altern 11(3):699

    Google Scholar 

  82. Nhim T, Richter A, Zhu X (2019) The resilience of social norms of cooperation under resource scarcity and inequality: an agent-based model on sharing water over two harvesting seasons. Ecol Complex. 40(B). https://doi.org/10.1016/j.ecocom.2018.06.001

  83. O’Connor RE, Bard RJ, Fisher A (1999) Risk perceptions, general environmental beliefs, and willingness to address climate change. Risk Anal 19(3):461–471

    Google Scholar 

  84. Odongo VO, Mulatu DW, Muthoni FK, Van Oel PR, Meins FM, Van der Tol C, Skidmore AK, Groen TA, Becht R, Onyando JO, van der Veen A (2014) Coupling socio-economic factors and eco-hydrological processes using a cascade-modeling approach. J Hydrol 518:49–59

    Article  Google Scholar 

  85. Olobatuyi ME (2006) A user’s guide to path analysis. University Press of America, Lanham, MD

    Google Scholar 

  86. Osés-Eraso N, Viladrich-Grau M (2007) Appropriation and concern for resource scarcity in the commons: an experimental study. Ecol Econ 63(2–3):435–445

    Article  Google Scholar 

  87. Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proc Natl Acad Sci USA 104(39):15181–15187

    Article  Google Scholar 

  88. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422

    Article  Google Scholar 

  89. Park SE, Marshall NA, Jakku E, Dowd AM, Howden SM, Mendham E, Fleming A (2012) Informing adaptation responses to climate change through theories of transformation. Glob Environ Chang 22(1):115–126

  90. Parsapour-Moghaddam P, Abed-Elmdoust A, Kerachian R (2015) A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources. Water Resour Manag 29(11):3905–3918

    Article  Google Scholar 

  91. Polymeros K, Karelakis C, Kaimakoudi E (2010) A path analysis approach in investigating the performance of the Greek fisheries market. Food Econ–Acta Agricult Scand C 7(2–4):128–138

    Google Scholar 

  92. Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol Ecol 24(2):263–283

    Article  Google Scholar 

  93. Qureshi AS, Gill MA, Sarwar A (2010) Sustainable groundwater management in Pakistan: challenges and opportunities. Irrig Drain 59(2):107–116

    Article  Google Scholar 

  94. Racine NM, Madigan SL, Plamondon AR, McDonald SW, Tough SC (2018) Differential associations of adverse childhood experience on maternal health. Am J Prev Med 54(3):368–375

    Article  Google Scholar 

  95. Roch SG, Samuelson CD (1997) Effects of environmental uncertainty and social value orientation in resource dilemmas. Organ Behav Hum Decis Process 70(3):221–235

    Article  Google Scholar 

  96. Rutte CG, Wilke HA, Messick DM (1987) Scarcity or abundance caused by people or the environment as determinants of behavior in the resource dilemma. J Exp Soc Psychol 23(3):208–216

    Article  Google Scholar 

  97. Samuelson CD, Messick DM, Rutte C, Wilke H (1984) Individual and structural solutions to resource dilemmas in two cultures. J Pers Soc Psychol 47(1):94

    Article  Google Scholar 

  98. Sanderson MR, Bergtold JS, Heier Stamm JL, Caldas MM, Ramsey SM (2017) Bringing the “social” into sociohydrology: conservation policy support in the central Great Plains of Kansas, USA. Water Resour Res 53(8):6725–6743

    Article  Google Scholar 

  99. Sanderson MR, Curtis AL (2016) Culture, climate change and farm-level groundwater management: an Australian case study. J Hydrol 536:284–292

    Article  Google Scholar 

  100. Sanderson MR, Hughes V (2019) Race to the bottom (of the well): groundwater in an agricultural production treadmill. Soc Probl 66(3):392–410

    Article  Google Scholar 

  101. Sanderson MR, Bergtold JS, Stamm JLH, Caldas MM, Ramsey SM, Aistrup J (2018) Climate change beliefs in an agricultural context: what is the role of values held by farming and non-farming groups? Clim Chang 150(3–4):259–272

    Article  Google Scholar 

  102. Scott CA, Shah T (2004) Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. Int J Water Resour Dev 20(2):149–164

    Article  Google Scholar 

  103. Scott CA, Vicuña S, Blanco Gutiérrez I, Meza F, Varela Ortega C (2014) Irrigation efficiency and water-policy implications for river-basin resilience. Hydrol Earth Syst Sci 18(4):1339–1348

    Article  Google Scholar 

  104. Sedaghat R (2002) A survey on the economic theory of the contiguous poverty and underdevelopment in pistachio work areas of Iran (in Persian). Agric Econ Deve 10(39):187–201

    Google Scholar 

  105. Shalsi S, Ordens CM, Curtis A, Simmons CT (2019) Can collective action address the “tragedy of the commons” in groundwater management? Insights from an Australian case study. Hydrogeol J 27(7):2471–2483

    Article  Google Scholar 

  106. Sherven P J (2016) The role of technology: a path analysis of factors contributing to undergraduates’ satisfaction with their overall university experience. PhD Thesis, The University of Minnesota, Minneapolis, MN

  107. Stern PC, Dietz T, Kalof L (1993) Value orientations, gender and environmental concern. Environ Behav 25:322–348

    Article  Google Scholar 

  108. Suhardiman D, Pavelic P, Keovilignavong O, Giordano M (2018) Putting farmers’ strategies in the center of agricultural groundwater use in the Vientiane Plain, Laos. Int J Water Resour Dev https://doi.org/10.1080/07900627.2018.1543116

  109. Sun W, Chou CP, Stacy AW, Ma H, Unger J, Gallaher P (2007) SAS and SPSS macros to calculate standardized Cronbach’s alpha using the upper bound of the phi coefficient for dichotomous items. Behav Res Methods 39(1):71–81

    Article  Google Scholar 

  110. Tabnak (2019) What is the status of the country’s groundwater resources (in Persian)? Available online at https://www.tabnak.ir/fa/news/918849/. Accessed April 4, 2020

  111. Taghipoor Javi A, Seidaiy SA, Barimani F (2020) The spatial impact of socio-economic structure of rural areas on groundwater resources drawdown (case study: rural settlements of Lordegan) (in Persian). Town Country Plann 11(2):337–360

    Google Scholar 

  112. Tasnim (2016) Iran’s most important water project / Strange slowness in dealing with illegal wells. Available online at https://www.tasnimnews.com/fa/news/1397/07/29/1857783/. Accessed April 20, 2020

  113. Tasnim (2019) The number of forbidden plains in Iran reached 408 plains (in Persian). https://www.tasnimnews.com/fa/news/1398/07/09/2109370/. Accessed April 4, 2020

  114. Valizadeh N, Bijani M, Hayati D, Haghighi NF (2019) Social-cognitive conceptualization of Iranian farmers’ water conservation behavior. Hydrogeol J 27(4):1131–1142

    Article  Google Scholar 

  115. Van Dijk E, De Cremer D (2006) Self-benefiting in the allocation of scarce resources: leader-follower effects and the moderating effect of social value orientations. Personal Soc Psychol Bull 32(10):1352–1361

    Article  Google Scholar 

  116. Van Lange PA, Joireman J, Parks CD, Van Dijk E (2013) The psychology of social dilemmas: a review. Organ Behav Hum Decis Process 120(2):125–141

    Article  Google Scholar 

  117. Van Vugt M, Samuelson CD (1999) The impact of personal metering in the management of a natural resource crisis: a social dilemma analysis. Personal Soc Psychol Bull 25(6):735–750

    Article  Google Scholar 

  118. Varghese SK, Veettil PC, Speelman S, Buysse J, Van Huylenbroeck G (2013) Estimating the causal effect of water scarcity on the groundwater use efficiency of rice farming in South India. Ecol Econ 86:55–64

    Article  Google Scholar 

  119. Wachong Castro V, Heerink N, Shi X, Qu W (2010) Water savings through off-farm employment? China Agric Econ Rev 2(2):167–184

    Article  Google Scholar 

  120. Watto MA, Mugera AW, Kingwell R, Saqab MM (2018) Re-thinking the unimpeded tube-well growth under the depleting groundwater resources in the Punjab, Pakistan. Hydrogeol J 26(7):2411–2425

    Article  Google Scholar 

  121. Wolf AT (1999) “Water wars” and water reality: conflict and cooperation along international waterways. In: Environmental change, adaptation, and security. Springer, Dordrecht, The Netherlands, pp 251–265

    Google Scholar 

  122. Yazdanpanah M, Hayati D, Hochrainer-Stigler S, Zamani GH (2014) Understanding farmers’ intention and behavior regarding water conservation in the Middle-East and North Africa: a case study in Iran. J Environ Manag 135:63–72

    Article  Google Scholar 

  123. Yin N, Huang Q, Wang Y (2018) Impacts of off-farm employment on groundwater irrigation in North China. Environ Dev Econ 23(2):161–183

    Article  Google Scholar 

  124. Zaikin A, Espínola-Arredondo A, Prera A (2018) Water allocation strategies: experimental evidence from Uzbekistan. J Water Resour Prot 10(1):20–40

    Article  Google Scholar 

  125. Zeraatkar H Golkar E (2016) Water use in Rafsanjan plain from 1951 until now (in Persian). IWPRI (Iran water policy and research institute), Kerman, Iran

Download references

Acknowledgements

Helpful comments on this paper were received by Charles Perrings, Christopher Scott, and the journal editor and reviewers. Part of the questionnaire used in this study was developed in collaboration with Mohammad Reza Farzaneh and Ali Bagheri; they, along with the Iran Water Policy Research Institute, were also very helpful with the data collection. The views expressed in this paper are those of the authors and do not necessarily represent those of the United Nations, including UNDP, or the UN member States.

Funding

The first author of this paper acknowledges the financial supports received from the UNDP Asia–Pacific Human Development Academic Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mahmoud Hashemi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.M., Kinzig, A., Abbott, J.K. et al. Exploring farmers’ perceptions about their depleting groundwater resources using path analysis: implications for groundwater overdraft and income diversification. Hydrogeol J (2020). https://doi.org/10.1007/s10040-020-02190-2

Download citation

Keywords

  • Groundwater management
  • Common-pool resources
  • Income diversification
  • Iran
  • Socio-economic aspects