Generalized hydraulic conductivity model for capillary and adsorbed film flow

Modèle de conductivité hydraulique généralisée pour l’écoulement capillaire et associé au film adsorbé

Modelo de conductividad hidráulica generalizada para el flujo capilar y pelicular por absorción

毛细水和吸附膜流动的广义渗透系数模型

Modelo de condutividade hidráulica generalizado para fluxo de filme-adsorvente e capilaridade

Abstract

Commonly used transport models of unsaturated flow assume that the movement of pore water is dominated mainly by capillary flow and they neglect adsorbed film flow. These models have been proven to be successful at high and intermediate saturations but typically underestimate the hydraulic conductivity in the dry range, where water movement in equilibrium conditions is dominated by adsorbed film flow. Given these considerations, this paper proposes a simplified configuration of pore water that accounts for the transport processes of both capillary and film flow. Based on the mechanisms of soil water retention, a conception of the specific thickness of the adsorbed film is defined to describe the adsorption strength and adsorption capacity of porous media. Furthermore, a statistical physically based model of relative hydraulic conductivity in the full range of suction is derived. Fractal and Monte Carlo methods are used to determine the pore size distribution of porous media and then the corresponding specific model of relative hydraulic conductivity is derived. The results show that the proposed model agrees well with the experimental data in the entire suction range. It is also found that the pore size distribution of porous media controls the transport characteristic of capillary water but not adsorption film flow which is only related to the mineral content, mineral species, and specific surface area. Additionally, the influences of the model parameters on the transport of porous media are also addressed.

Résumé

Les modèles de transport couramment utilisés d’écoulement en zon non saturée supposent que le mouvement de l’eau porale est dominé principalement par le flux capillaire et ils négligent l’écoulement associé au film adsorbé. Ces modèles se sont avérés être couronnés de succès à des saturations élevées et intermédiaires, mais sous-estiment généralement la conductivité hydraulique dans la gamme sèche, où le mouvement de l’eau dans des conditions d’équilibre est dominée par l’écoulement associé au film adsorbé. Compte tenu de ces considérations, cet article propose une configuration simplifiée de l’eau porale qui tient compte des processus de transport aussi bien de l’écoulement capillaire que celui associé au film. A partir des mécanismes de rétention d’eau du sol, une conception de l’épaisseur spécifique du film adsorbé est définie pour décrire la force d’adsorption et la capacité d’adsorption des médias poreux. En outre, un modèle statistique à base physique de conductivité hydraulique relative pour toute la gamme de succion est dérivé. Les méthodes des fractales et de Monte Carlo sont utilisées pour déterminer la répartition de la taille des pores du milieu poreux, puis le modèle spécifique correspondant de conductivité hydraulique relative en est déduit. Les résultats montrent que le modèle proposé est cohérent avec les données expérimentales pour toute la gamme de succion. On constate également que la répartition de la taille des pores du milieu poreux contrôle la caractéristique de transport de l’eau capillaire, mais pas l’écoulement associé au film d’adsorption qui est seulement lié à la teneur minérale, aux espèces minérales et à la surface spécifique. En outre, les influences des paramètres du modèle sur le transport en milieu poreux sont également abordées.

Resumen

Los modelos de transporte de flujo no saturado comúnmente utilizados asumen que el movimiento del agua en los poros está dominado principalmente por el flujo capilar y descuidan el flujo pelicular por absorción. Estos modelos han demostrado ser exitosos para saturaciones altas e intermedias, pero típicamente subestiman la conductividad hidráulica en el rango seco, donde el movimiento del agua en condiciones de equilibrio está dominado por el flujo pelicular por adsorción. Teniendo en cuenta estas consideraciones, en el presente documento se propone una configuración simplificada del agua en los poros que da cuenta de los procesos de transporte del flujo capilar y pelicular. Basándose en los mecanismos de retención de agua del suelo, se define una noción del espesor específico de la película adsorbida para describir la fuerza de adsorción y la capacidad de adsorción de los medios porosos. Además, se obtiene un modelo estadístico basado físicamente en la conductividad hidráulica relativa en todo el rango de la succión. Se utilizan los métodos Fractal y Monte Carlo para determinar la distribución del tamaño de los poros de un medio poroso y luego se deriva el correspondiente modelo específico de conductividad hidráulica relativa. Los resultados muestran que el modelo propuesto se corresponde con los datos experimentales en todo el rango de la succión. También se ha comprobado que la distribución del tamaño de los poros de los medios porosos controla la característica de transporte del agua capilar pero no el flujo pelicular por adsorción, que sólo está relacionado con el contenido mineral, las especies minerales y la superficie específica. Además, también se abordan las influencias de los parámetros del modelo en el transporte de medios porosos.

摘要

常用的非饱和流传输模型假设孔隙水的运动主要由毛细水控制,而忽略了吸附膜的水。这些模型已被证明在高和中等饱和度条件下是适用的,但通常会低估干燥范围内的渗透系数,而在干燥条件下,平衡条件下水运动主要由吸附膜水决定。考虑到这些考虑因素,本文提出了一种简化的孔隙水构型,该构型考虑了毛细水和薄膜水的传输过程。基于土壤持水机理,定义了吸附膜比厚度的概念来描述多孔介质的吸附强度和吸附能力。此外,推导了在整个吸力范围内的基于物理统计的相对渗透系数模型。分形和蒙特卡罗方法用于确定多孔介质的孔径分布,然后推导相应的相对渗透系数的特定模型。结果表明,所提出的模型与整个吸力范围内的实验数据吻合良好。还发现,多孔介质的孔径分布控制着毛细水的传输特性,而不控制吸附膜的流动,而吸附膜的流动仅与矿物含量,矿物种类和比表面积有关。另外,还讨论了模型参数对多孔介质传输的影响。

Resumo

Modelos de transporte comumente utilizados no fluxo em zona não saturada presumem que o movimento da água nos poros é dominado principalmente pelo fluxo de capilaridade e eles negligenciam o fluxo em filme-adsorvente. Esses modelos provaram ser bem sucedidos em saturações altas e intermediárias, mas tipicamente subestimam a condutividade hidráulica em alcance seco, onde o movimento da água em condições equilibradas é dominado pelo fluxo do filme-adsorvente. Dadas essas condições, esse trabalho propõe uma configuração simplificada da água nos poros que é considerada para os processos de transporte para ambos capilaridade e fluxo de filme. Baseado nos mecanismos de retenção de água no solo, uma conceitualização da espessura especifica do filme-adsorvente é definida para descrever a força e a capacidade de adsorção para o gradiente poroso. Além disso, um modelo estatístico fisicamente embasado da condutividade hidráulica relativa em um alcance total de sucção é derivado. Métodos de fractal e Monte Carlo são usados para determinar a distribuição do tamanho do poro do gradiente poroso e então o modelo específico correspondente da condutividade hidráulica relativa é derivada. Os resultados mostram que o modelo proposto concorda bem com os dados experimentais no alcance inteiro de sucção. Também é encontrado que a distribuição do tamanho do poro do gradiente poroso controla das características do transporte da água na capilaridade, mas não no fluxo de filme-adsorvente que está apenas relacionado com o conteúdo mineral, espécies minerais, e área de superfície específica. Adicionalmente, as influências dos parâmetros do modelo no transporte do gradiente poroso também são endereçadas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alexander L, Skaggs RW (1986) Predicting unsaturated hydraulic conductivity from the soil water characteristic. Trans Am Soc Agric Eng 29(1):176–184. https://doi.org/10.13031/2013.30123

    Article  Google Scholar 

  2. Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S, Mostaghimi P et al (2013) Pore-scale imaging and modelling. Adv Water Resour 51:197–216. https://doi.org/10.1016/j.advwatres.2012.03.003

    Article  Google Scholar 

  3. Bousfield DW, Karles G (2004) Penetration into three-dimensional complex porous structures. J Colloid Interface Sci 270(2):396–405. https://doi.org/10.1016/j.jcis.2003.10.017

    Article  Google Scholar 

  4. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology papers 3. Colorado State University, Fort Collins, CO, 37 pp

  5. Buckingham E (1907) Studies on the movement of soil moisture. Bulletin 38. US Gov Printing Office, Washington, DC

    Google Scholar 

  6. Burdine NT (1953) Relative permeability calculation size distribution data. Trans Am Inst Min Metall Pet Eng 198:71–78. https://doi.org/10.2118/225-g

    Article  Google Scholar 

  7. Chen Y, Zhang C, Shi M, Peterson GP (2009) Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys Rev E 80(2):026301. https://doi.org/10.1103/PhysRevE.80.026301

    Article  Google Scholar 

  8. Collis-George N (2010) A re-interpretation of the drainage moisture characteristic. Geoderma 189–190:87–90. https://doi.org/10.1016/j.geoderma.2012.05.008

    Article  Google Scholar 

  9. Derjaguin BV, Churaev NV (1974) Structural component of disjoining pressure. J Colloid Interface Sci 49(2):249–255. https://doi.org/10.1016/0021-9797(74)90358-0

    Article  Google Scholar 

  10. Derjaguin BV, Churaev NV, Muller VM (1987) Surface forces. Plenum, New York

    Google Scholar 

  11. Durner W, Fluhler H (2005) Soil hydraulic properties. In: Encyclopedia of hydrological sciences. Wiley, Hoboken, NJ

    Google Scholar 

  12. Ghanbarian B, Hunt AG (2017) Improving unsaturated hydraulic conductivity estimation in soils via percolation theory. Geoderma 303:9–18. https://doi.org/10.1016/j.geoderma.2017.05.004

    Article  Google Scholar 

  13. Ghanbarian B, Hunt AG, Daigle H (2016) Fluid flow in porous media with rough pore-solid interface. Water Resour Res 52(3):2045–2058. https://doi.org/10.1002/2015wr017857

    Article  Google Scholar 

  14. Goss KU, Madliger M (2007) Estimation of water transport based on in situ measurements of relative humidity and temperature in a dry Tanzanian soil. Water Resour Res 43:W05433. https://doi.org/10.1029/2006WR005197

    Article  Google Scholar 

  15. Guarracino L, Rötting T, Carrera J (2014) A fractal model to describe the evolution of multiphase flow properties during mineral dissolution. Adv Water Resour 67:78–86. https://doi.org/10.1016/j.advwatres.2014.02.011

    Article  Google Scholar 

  16. Israelachvili JN (2011) Intermolecular and surface forces. Academic, San Diego

    Google Scholar 

  17. Jansik DP (2009) Flow processes in the dry regime: the effect on capillary barrier performance. MS Thesis, Oregon State Univ., Corvallis, OR, 69 pp

  18. Khorshidi M, Lu N (2017) Intrinsic relation between soil water retention and cation exchange capacity. J Geotech Geoenviron Eng 143(4):04016119. https://doi.org/10.1061/(asce)gt.1943-5606.0001633

    Article  Google Scholar 

  19. Khoshghalb A, Pasha AY, Khalili N (2015) A fractal model for volume change dependency of the water retention curve. Géotechnique 65(2):141–146. https://doi.org/10.1680/geot.14.t.016

    Article  Google Scholar 

  20. Kosugi K (1994) Three-parameter lognormal distribution model for soil water retention. Water Resour Res 30(4):891–901. https://doi.org/10.1029/93wr02931

    Article  Google Scholar 

  21. Kosugi K (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32:2697–2703. https://doi.org/10.1029/96WR01776

    Article  Google Scholar 

  22. Langmuir I (1938) Repulsive forces between charged surfaces in water, and the cause of the Jones-ray effect. Science 88:430–432. https://doi.org/10.1126/science.88.2288.430

    Article  Google Scholar 

  23. Lebeau M, Konrad JM (2010) A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 46(12). https://doi.org/10.1029/2010wr009092

  24. Lenormand R (1990) Liquids in porous media. J Phys Condens Matter 2:SA79–SA88

    Article  Google Scholar 

  25. Lu N (2016) Generalized soil water retention equation for adsorption and capillarity. J Geotech Geoenviron Eng 142(10):04016051. https://doi.org/10.1061/(asce)gt.1943-5606.000152

    Article  Google Scholar 

  26. Lu N, Zhang C (2019) Soil sorptive potential: concept, theory, and verification. J Geotech Geoenviron Eng 145(4):04019006. https://doi.org/10.1061/(asce)gt.1943-5606.0002025

    Article  Google Scholar 

  27. McBride MB, Baveye P (1995) Mobility of anion spin probes in hectorite gels: viscosity of surficial water. Soil Sci Soc Am J 59(2):388. https://doi.org/10.2136/sssaj1995.03615995005900020017x

    Article  Google Scholar 

  28. Minasny B, Field D (2005) Estimating soil hydraulic properties and their uncertainty: the use of stochastic simulation in the inverse modelling of the evaporation method. Geoderma 126(3–4):277–290. https://doi.org/10.1016/j.geoderma.2004.09.015

    Article  Google Scholar 

  29. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–521. https://doi.org/10.1029/wr012i003p00513

    Article  Google Scholar 

  30. Mualem Y (1976b) A catalogue of the hydraulic properties of unsaturated soils. Technion, Israel Inst. of Technol., Haifa, Israel, 100 pp

  31. Nemes A, Schaap MG, Leij FJ, Wösten JHM (2001) Description of the unsaturated soil hydraulic database UNSODA version 2.0. J Hydrol 251(3–4):151–162. https://doi.org/10.1016/S0022-1694(01)00465-6

    Article  Google Scholar 

  32. Or D, Tuller M (2000) Flow in unsaturated fractured porous media: hydraulic conductivity of rough surfaces. Water Resour Res 36(5):1165–1177. https://doi.org/10.1029/2000wr900020

    Article  Google Scholar 

  33. Pachepsky YA, Shcherbakov RA, Varallyay G, Rajkai K (1984) On obtaining soil hydraulic conductivity curves from water retention curves (in Russian). Pochvovedenie 10:60–72

    Google Scholar 

  34. Peters A (2013) Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour Res 49(10):6765–6780. https://doi.org/10.1002/wrcr.20548

    Article  Google Scholar 

  35. Peters A, Durner W (2008) A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow. Water Resour Res 44(11). https://doi.org/10.1029/2008wr007136

  36. Rudiyanto Sakai M, van Genuchten MT, Alazba AA, Setiawan BI, Minasny B (2015) A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis. Water Resour Res 51(11):8757–8772. https://doi.org/10.1002/2015wr017703

    Article  Google Scholar 

  37. Šimůnek J (2005) Models of water flow and solute transport in the unsaturated zone, chap 78. In: Encyclopedia of hydrological sciences. Wiley, Chichester, UK, pp 1171–1180

  38. Tokunaga TK (2009) Hydraulic properties of adsorbed water films in unsaturated porous media. Water Resour Res 45(6). https://doi.org/10.1029/2009wr007734

  39. Toledo P, Novy R, Davis H, Scriven L (1990) Hydraulic conductivity of porous media at low water content. Soil Sci Soc Am J 54:673–679. https://doi.org/10.2136/sssaj1990.03615995005400030060x

    Article  Google Scholar 

  40. Tuller M, Or D (2001) Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour Res 37(5):1257–1276. https://doi.org/10.1029/2000wr900328

    Article  Google Scholar 

  41. Tuller M, Or D, Dudley LM (1999) Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour Res 35(7):1949–1964. https://doi.org/10.1029/1999wr900098

    Article  Google Scholar 

  42. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  43. Xu C, Torres-Verdín C (2013) Pore system characterization and Petrophysical rock classification using a bimodal Gaussian density function. Math Geosci 45(6):753–771. https://doi.org/10.1007/s11004-013-9473-2

    Article  Google Scholar 

  44. Xu P, Qiu S, Yu B, Jiang Z (2013) Prediction of relative permeability in unsaturated porous media with a fractal approach. Int J Heat Mass Transf 64:829–837. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.003

    Article  Google Scholar 

  45. Yang Z, Mohanty BP (2015) Effective parameterizations of three nonwetting phase relative permeability models. Water Resour Res 51(8):6520–6531. https://doi.org/10.1002/2014WR016190

    Article  Google Scholar 

  46. Yu B, Cheng P (2002) A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transf 45(14):2983–2993. https://doi.org/10.1016/s0017-9310(02)00014-5

    Article  Google Scholar 

  47. Yu B, Zou M, Feng Y (2005) Permeability of fractal porous media by Monte Carlo simulations. Int J Heat Mass Transf 48(13):2787–2794. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.008

    Article  Google Scholar 

  48. Zhang C, Lu N (2018) What is the range of soil water density? Critical reviews with a unified model. Rev Geophys 56(3):532–562. https://doi.org/10.1029/2018rg000597

    Article  Google Scholar 

  49. Zhang ZF (2011) Soil water retention and relative permeability for conditions from oven-dry to full saturation. Vadose Zone J 10(4):1299. https://doi.org/10.2136/vzj2011.0019

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to He Chen.

Appendices

Appendix A: Monte Carlo simulation of fractal basis

According to the fractal scaling law, the total pore number from rmin to rmax can be determined by Eq. (26):

$$ {N}_{\mathrm{t}}={\left(\frac{r_{\mathrm{min}}}{r_{\mathrm{max}}}\right)}^{-{D}_{\mathrm{f}}} $$
(38)

Combining Eqs. (27) and (38), it can be obtained that

$$ -\frac{\mathrm{d}N(r)}{N_{\mathrm{t}}}={D}_{\mathrm{f}}{r}_{\mathrm{min}}^{D_{\mathrm{f}}}{r}^{-{D}_{\mathrm{f}}-1}\mathrm{d}r=f(r)\mathrm{d}r $$
(39)

where \( f(r)={D}_{\mathrm{f}}{r}_{\mathrm{min}}^{D_{\mathrm{f}}}{r}^{-{D}_{\mathrm{f}}-1} \) is defined as the probability density function (Yu et al. 2005; Xu et al. 2013). Additionally,

$$ {\int}_{r_{\mathrm{min}}}^{r_{\mathrm{max}}}f(r)\mathrm{d}r=1-{\left(\frac{r_{\mathrm{min}}}{r_{\mathrm{max}}}\right)}^{D_{\mathrm{f}}} $$
(40)

From the viewpoint of probability theory, (rmin/rmax)Df = 0 must be satisfied so that the probability density function f(r) is meaningful. Fortunately, for natural porous media (e.g., soil), rmin/rmax<<10−2. Hence, (rmin/rmax)Df = 0 holds approximately.

Then, the cumulative probability R(r) of pores with size from rmin to r can be captured by integrating the probability density function f(r) as follows:

$$ R(r)={\int}_{r_{\mathrm{min}}}^rf(r)\mathrm{d}r=1-{\left(\frac{r_{\mathrm{min}}}{r}\right)}^{D_{\mathrm{f}}} $$
(41)

From Eq. (41), it is clear that R=0 as r=rmin and R=1 as r=rmax. Since the size of pores is randomly distributed in the range of rminrmax for natural porous media, R is a set of random numbers in the range of 0–1.

Rearranging Eq. (41) yields

$$ r=\frac{r_{\mathrm{min}}}{{\left(1-R\right)}^{1/{D}_{\mathrm{f}}}} $$
(42)

Equation (42) indicates that the pore size in the range of rminrmax can be determined at a given random number R with a range of 0–1. Therefore, Eq. (42) can be seen as a Monte Carlo probability model capturing the pore size.

Combining Eqs. (25) and (42), the Monte Carlo model of relative hydraulic conductivity in the full range of the matric head can be obtained:

$$ {k}_{\mathrm{r}}=\left\{\begin{array}{c}\left[\sum \limits_{i=1\left({r}_{\mathrm{min}}\right)}^{j\left({r}_{\mathrm{c}}\right)}\frac{1}{{\left(1-{R}_i\right)}^{4/{D}_{\mathrm{f}}}{\tau}_i}+\frac{8}{3}\sum \limits_{i=j\left({r}_{\mathrm{c}}\right)}^{n\left({r}_{\mathrm{max}}\right)}\left(\frac{2{\beta}^3{\left(1-{R}_c\right)}^{-3\alpha /{D}_{\mathrm{f}}}}{{\left(1-{R}_i\right)}^{\left(4-3\alpha \right)/{D}_{\mathrm{f}}}{\tau}_i}-\frac{\beta^4{\left(1-{R}_c\right)}^{-4\alpha /{D}_{\mathrm{f}}}}{{\left(1-{R}_i\right)}^{\left(4-4\alpha \right)/{D}_{\mathrm{f}}}{\tau}_i}\right)\right]/\sum \limits_{i=1\left({r}_{\mathrm{min}}\right)}^{n\left({r}_{\mathrm{max}}\right)}\frac{1}{{\left(1-{R}_i\right)}^{4/{D}_{\mathrm{f}}}{\tau}_i}\kern0.66em ,h\le {h}_{c,\min}\\ {}\\ {}\left(\frac{16}{3}{\beta}^3{\xi}^{3\alpha}\sum \limits_{i=1\left({r}_{\mathrm{min}}\right)}^{n\left({r}_{\mathrm{max}}\right)}\frac{1}{{\left(1-{R}_i\right)}^{\left(4-3\alpha \right)/{D}_{\mathrm{f}}}{\tau}_i}-\frac{8}{3}{\beta}^4{\xi}^{4\alpha}\sum \limits_{i=1\left({r}_{\mathrm{min}}\right)}^{n\left({r}_{\mathrm{max}}\right)}\frac{1}{{\left(1-{R}_i\right)}^{\left(4-4\alpha \right)/{D}_{\mathrm{f}}}{\tau}_i}\right)/\sum \limits_{i=1\left({r}_{\mathrm{min}}\right)}^{n\left({r}_{\mathrm{max}}\right)}\frac{1}{{\left(1-{R}_i\right)}^{4/{D}_{\mathrm{f}}}{\tau}_i}\kern1.32em ,h>{h}_{c,\min}\end{array}\right. $$
(43)

where Rc is a random number corresponding to the critical radius. ξ=r*/rmin is a parameter indicating that the suction characteristic radius r* is smaller than rmin, subject to ξ<=1.

Appendix B: notation

A F :

Cross-section area of film flow for a single pore (L2)

A F :

Hamaker constant (ML2T−2)

A REV :

Cross-section area of the REV (L2)

C f :

Fractal factor

D f :

Area fractal dimension

D T :

Tortuosity fractal dimension

e :

Electron charge (TI)

g :

The gravity acceleration constant (LT–2)

h :

Matric head (L)

h c,max :

Maximum matric head retained by capillarity (L)

h c,min :

Minimum matric head retained by capillarity (L)

k B :

Boltzmann constant (ML2T−2Θ−1)

k r :

Relative hydraulic conductivity

K s :

Saturated hydraulic conductivity (LT−1)

L 0 :

Representative length of a pore (L

L t :

Tortuous length of a pore (L)

n :

Porosity

P:

Pressure drop (ML−1 T−2)

Q C U,t :

Total volumetric flow rate of capillary water (L3T−1)

Q F U,t :

Total volumetric flow rate of film flow (L3T−1)

q F :

Volumetric flow rate of film flow for a single pore (L3T−1)

Q S,t :

Total volumetric flow rate of saturated REV (L3T−1)

Q U,t :

Total volumetric flow rate of unsaturated REV (L3T−1)

r :

Radius of grains or pores (L)

r * :

Suction characteristic radius (L)

r c :

Critical pore radius (L)

r i :

Radius of ith pore (L)

r max :

Maximum pore radius (L)

r min :

Minimum pore radius (L)

S :

Surface area of the grain (L2)

S specific :

Specific surface area of the grain (L−1)

T :

Kelvin temperature (Θ)

V :

Grain volume (L3)

\( {\overline{v}}_{\mathrm{p}} \) :

Average liquid velocity (LT−1)

Z :

Ion change

Π :

Disjoining pressure (ML−1 T−2)

Π e :

Ionic-electrostatic component of disjoining pressure (ML−1 T−2)

Π m :

Molecular component of disjoining pressure (ML−1 T−2)

Π s :

Structure component of disjoining pressure (ML−1 T−2)

α :

Adsorption strength of materials

β :

Adsorption capacity of materials

δ :

Specific thickness of adsorbed water

ε :

Relative permittivity of water

ε 0 :

Permittivity of free space (M−1L−3T4Ι2)

λ :

Shape factor

μ :

Viscosity of pore water (ML−1 T−1)

θ :

Contact angle

θ a :

Adsorbed water film volume of a grain (L3)

ρ :

Density of pore water (ML−3)

σ :

Water surface tension (ML−1 T−2)

τ i :

Tortuosity of ith pore

τ :

Pore tortuosity

ω :

Film thickness (L)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Chen, H. Generalized hydraulic conductivity model for capillary and adsorbed film flow. Hydrogeol J (2020). https://doi.org/10.1007/s10040-020-02175-1

Download citation

Keywords

  • Hydraulic properties
  • Adsorbed film flow
  • Matric suction
  • Fractal
  • Numerical modeling