Advertisement

Impact of recharge water temperature on bioclogging during managed aquifer recharge: a laboratory study

  • Lu Xia
  • Zongjun Gao
  • Xilai Zheng
  • Jiuchuan Wei
Paper
  • 109 Downloads

Abstract

To investigate the effect of recharge water temperature on bioclogging processes and mechanisms during seasonal managed aquifer recharge (MAR), two groups of laboratory percolation experiments were conducted: a winter test and a summer test. The temperatures were controlled at ~5±2 and ~15±3 °C, and the tests involved bacterial inoculums acquired from well water during March 2014 and August 2015, for the winter and summer tests, respectively. The results indicated that the sand columns clogged ~10 times faster in the summer test due to a 10-fold larger bacterial growth rate. The maximum concentrations of total extracellular polymeric substances (EPS) in the winter test were approximately twice those in the summer test, primarily caused by a ~200 μg/g sand increase of both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In the first half of the experimental period, the accumulation of bacteria cells and EPS production induced rapid bioclogging in both the winter and summer tests. Afterward, increasing bacterial growth dominated the bioclogging in the summer test, while the accumulation of LB-EPS led to further bioclogging in the winter test. The biological analysis determined that the dominant bacteria in experiments for both seasons were different and the bacterial community diversity was ~50% higher in the winter test than that for summer. The seasonal inoculums could lead to differences in the bacterial community structure and diversity, while recharge water temperature was considered to be a major factor influencing the bacterial growth rate and metabolism behavior during the seasonal bioclogging process.

Keywords

Artificial recharge Laboratory experiments/measurements Temperature Bioclogging Extracellular polymeric substances 

Impact de la température de l’eau de recharge sur le biocolmatage lors d’une recharge artificielle d’un aquifère: étude en laboratoire

Résumé

Afin d’étudier l’effet de la température de l’eau de recharge sur les processus et les mécanismes de colmatage biologique lors de la recharge artificielle saisonnière d’un aquifère (MAR), deux groupes de tests de percolation ont été menés en laboratoire : un test d’hiver et un test d’été. Les températures ont été contrôlées à environ ~5±2 °C et à environ ~15±3 °C, et les tests ont intégré l’introduction d’inoculum bactériens issus de l’eau du forage, prélevée en mars 2014 et en août 2015, respectivement pour les tests d’hiver et d’été. Les résultats indiquent que les colonnes de sable se colmatent ~10 fois plus rapidement lors du test d’été en raison d’un taux de croissance bactérienne 10 fois plus élevé. Les concentrations maximales de substances polymères extracellulaires (SPE) totales pour le test d’hiver ont été à peu près deux fois supérieures par rapport au test d’été, essentiellement dues à une augmentation d’environ 200 μg/g de sable, que ce soit pour les SPE faiblement liées et pour les SPE fortement liées. Dans la première moitié de la période d’expérimentation, l’accumulation de cellules bactériennes et la production de SPE ont induit un colmatage biologique rapide, que ce soit pour les tests d’hiver et pour ceux d’été. Par la suite, le développement bactérien a dominé le colmatage biologique lors du test d’été, tandis que l’accumulation de SPE faiblement liées a donné lieu à un colmatage biologique complémentaire lors du test d’hiver. Les analyses biologiques ont montré que les bactéries dominantes lors des expérimentations pour les deux saisons n’étaient pas les mêmes, et que la diversité des populations bactériennes était supérieure d’environ 50% en hiver, par rapport à l’été. Les inoculum saisonniers pourraient mener à des différences dans la structure et la diversité des communautés bactériennes, tandis que la température de l’eau de recharge a été considérée comme étant un facteur majeur d’influence du taux de croissance bactérienne et de leur métabolisme durant les processus de colmatage saisonnier.

Impacto de la temperatura del agua de recarga en la obstrucción biológica durante la recarga de un acuífero con manejo: un estudio de laboratorio

Resumen

Se realizaron dos grupos de experimentos de percolación de laboratorio para investigar el efecto de la temperatura del agua de recarga en los procesos y mecanismos de obstrucción biológica durante la recarga de acuíferos con un manejo estacional (MAR): una prueba de invierno y una prueba de verano. Las temperaturas se controlaron a ~5±2 y ~15±3 °C, y las pruebas incluyeron inóculos bacterianos adquiridos en agua de pozo durante marzo de 2014 y agosto de 2015, para las pruebas de invierno y verano, respectivamente. Los resultados indicaron que las columnas de arena se obstruyeron ~10 veces más rápido en la prueba de verano debido a una tasa de crecimiento bacteriano 10 veces mayor. Las concentraciones máximas de sustancias poliméricas extracelulares totales (EPS) en la prueba de invierno fueron aproximadamente el doble que en la prueba de verano, causadas principalmente por un ~200 μg/g de aumento de arena tanto de EPS (LB-EPS) levemente ligada como de EPS fuertemente ligada (TB-EPS). En la primera mitad del período experimental, la acumulación de células bacterianas y la producción de EPS indujeron a una obstrucción biológica rápida en las pruebas de invierno y verano. Posteriormente, el aumento del crecimiento bacteriano dominó la obstrucción biológica en la prueba de verano, mientras que la acumulación de LB-EPS condujo a una mayor obstrucción biológica en la prueba de invierno. El análisis biológico determinó que las bacterias dominantes en los experimentos para ambas estaciones eran diferentes y que la diversidad de la comunidad bacteriana era ~50% más alta en la prueba de invierno que la del verano. Los inóculos estacionales podrían conducir a diferencias en la estructura y diversidad de la comunidad bacteriana, mientras que la temperatura del agua de recarga se consideró un factor principal que influye en la tasa de crecimiento bacteriano y el comportamiento del metabolismo durante el proceso de obstrucción biológica estacional.

回灌水温度对人工回灌含水层微生物堵塞的影响:室内研究

摘要

本论文分别设计了冬季和夏季两组室内渗流试验,来研究回灌水温度对季节性人工回灌含水层微生物堵塞过程和机理。其中,冬季室内试验,回灌水温度为~5±2 °C,渗流试验细菌接种液取自现场回灌井(采样时间为2014年3月)。夏季室内试验,回灌水温度为~15±3°C,接种液取自同一回灌井(采样时间为2015年8月)。研究结果表明,夏季渗流试验中,含水介质中细菌生长速率比冬季试验细菌生长速率高10倍,砂柱堵塞速率比冬季砂柱堵塞速率快10倍。冬季试验中,细菌分泌的总胞外聚合物(Extracellular polymeric substances, EPS)浓度最大值是夏季试验中总EPS浓度最大值的2倍,这主要是由于冬季细菌分泌的紧密结合型EPS(Loosely bound EPS, LB-EPS)和松散结合型EPS (Tightly bound EPS, TB-EPS)浓度比夏季LB-EPS和TB-EPS浓度高~200 μg/g 砂样。在冬季和夏季渗流试验中,细菌细胞的积累和EPS的产生是导致砂柱前半阶段堵塞的主要原因。此后,细菌自身的生长是导致夏季试验砂柱堵塞的主要原因,而LB-EPS增加是冬季试验砂柱堵塞的主要原因。微生物学分析表明,冬、夏季试验砂柱中优势菌种种类不同,且冬季细菌群落多样性比夏季细菌群落多样性高50%。现场采集的接种液的季节性差异可能引起渗流试验中细菌群落结构和多样性不同。然而,回灌水温度的不同是导致季节性微生物堵塞过程中细菌生长速率和代谢行为差异的主要原因。

Impacto da temperatura da água de recarga na biocolmatação durante gerenciamento da recarga do aquífero: um estudo de laboratório

Resumo

Para investigar o efeito da temperatura da água de recarga nos processos e mecanismos de biocolmatação durante a recarga sazonal de um aquífero com gerenciamento de recarga artificial (GRA), dois grupos de experimentos laboratoriais de percolação foram realizados a fim de representar as estações de inverno e verão. As temperaturas foram controladas a ~5±2 e ~15±3 ºC, e os testes envolveram inóculos de bactérias adquiridos de água de poço durante março de 2014 e agosto de 2015, para os testes de inverno e verão, respectivamente. Os resultados indicaram que as colunas de areia entupiram ~10 vezes mais rápido no teste de verão devido a uma taxa de crescimento bacteriano 10 vezes maior. As concentrações máximas totais de substâncias poliméricas extracelulares (SPE) no teste de inverno foram aproximadamente duas vezes maiores do que no teste de verão, causado principalmente por um aumento de ~200 μg/g de areia, ambos em ligações fracas em SPE (LFc-SPE) e ligações fortes em SPE (LFt-SPE). Na primeira metade do período experimental, o acúmulo de células bacterianas e a produção de SPE induziram uma rápida biocolmatação nos testes de inverno e verão. Em seguida, o aumento do crescimento bacteriano dominou a biocolmatação no teste de verão, enquanto o acúmulo de LFc-SPE levou a uma posterior biocolmatação no teste de inverno. A análise biológica determinou que as bactérias dominantes nos experimentos de ambas as estações foram diferentes e que a diversidade da comunidade bacteriana foi ~50% maior no teste de inverno do que no verão. Os inóculos sazonais poderiam levar a diferenças na estrutura e diversidade da comunidade bacteriana, enquanto a temperatura da água de recarga foi considerada o maior fator influenciador sobre a taxa de crescimento bacteriano e sobre o comportamento do metabolismo durante o processo sazonal de biocolmatação.

Notes

Acknowledgements

Sincere gratitude is expressed to the reviewers for their many helpful comments and constructive criticisms.

Funding Information

The authors would like to thank the National Science Foundation of China (41641020), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (2017RCJJ032), the China Postdoctoral Science Foundation (2016M592219), and the Qingdao Postdoctoral Applied Research Project (2015195) for their financial support. Xilai Zheng was also financially supported by the National Key Research Project (2016YFC0402810).

Supplementary material

10040_2018_1766_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1235 kb)

References

  1. Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594CrossRefGoogle Scholar
  2. Aledo CJ, Jiménez-Riveres S (2010) The effect of temperature on the enzyme-catalyzed reaction: insights from thermodynamics. J Chem Educ 87:296–298CrossRefGoogle Scholar
  3. Aoki C, Memon MA, Mabuchi H (2005) Water and wastewater reuse: an environmentally sound approach for sustainable urban water management. UNEP, Nairobi, KenyaGoogle Scholar
  4. Aydin S, Shahi A, Ozbayram EG, Ince B, Ince O (2015) Use of PCR-DGGE based molecular methods to assessment of microbial diversity during anaerobic treatment of antibiotic combinations. Biores Technol 192:735–740CrossRefGoogle Scholar
  5. Badireddy AR, Chellam S, Yanina S, Gassman P, Rosso KM (2008) Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: implications for membrane microfiltration. Biotech Bioeng 99(3):634–643CrossRefGoogle Scholar
  6. Baer ML, Ravel J, Chun J, Hill RT, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 50:219–224CrossRefGoogle Scholar
  7. Baveye P, Vandevivere P, Hoyle BL, DeLeo PC, Lozada DS (1998) Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit Rev Env Sci Tec 28(2):123–191CrossRefGoogle Scholar
  8. Blake GR, Hartge KH (1986) Particle density. In: Methods of soil analysis, part 1: physical and mineralogical methods. American Society of Agronomy, Madison, WI, pp 377–382Google Scholar
  9. Bouvet PJM, Grimont PAD (1986) Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended description of Ainetobacter calcoaceticus and Acinetobacter lwoffii. Int J Evol Microbiol 36:228–240Google Scholar
  10. Chen YP, Zhang P, Guo JS, Fang F, Gao X, Li C (2013) Functional groups characteristics of EPS in biofilm growing on different carriers. Chemosphere 92(6):633–638CrossRefGoogle Scholar
  11. Constantz J (1998) Interaction between stream temperature, stream flow, and groundwater exchanges in alpine streams. Water Resour Res 34(7):1609–1616CrossRefGoogle Scholar
  12. Danielson RE, Sutherland PL (1986) Porosity. In: Methods of soil analysis, part 1: physical and mineralogical methods. American Society of Agronomy, Madison, WI, pp 443–461Google Scholar
  13. Darcy H (1856) Les fontaines publications de la ville de Dijon [The fountains publication of the city of Dijon]. Dalmont, ParisGoogle Scholar
  14. De Ley J, Segers P, Gillis M (1978) Intra and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 28:154–168CrossRefGoogle Scholar
  15. Deng B, Shen CH, Shan XH, Ao ZH, Zhao JS, Shen XJ, Huang ZG (2012) PCR-DGGE analysis on microbial communities in pit mud of cellars used for different periods of time. J Inst Brew 118: 120-126Google Scholar
  16. Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13:313–316CrossRefGoogle Scholar
  17. Douterelo I, Sharpe RL, Boxall JB (2013) Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res 47(2):503–516CrossRefGoogle Scholar
  18. Fischer-Romero C, Tindall BJ, Jüttner F (1996) Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 41(1):183–188CrossRefGoogle Scholar
  19. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758CrossRefGoogle Scholar
  20. Gong MG, Tang M, Zhang QM, Feng X (2012) Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecolog Sin 32:62–67CrossRefGoogle Scholar
  21. Han ZZ, Meng RR, Yan HX, Zhao H, Han M, Zhao YY, Sun B, Sun YB, Wang J, Zhuang DX, Li WJ, Lu LX (2017) Calcium carbonate precipitation by Synechocystis sp. PCC6803 at different Mg/Ca molar ratios under the laboratory condition. Carbonates Evaporites 32(4):561–575CrossRefGoogle Scholar
  22. He G, Yi F, Zhou S, Lin J (2014) Microbial activity and community structure in two terrace-type wetlands constructed for the treatment of domestic wastewater. Ecol Eng 67:198–205CrossRefGoogle Scholar
  23. Hoffmann A, Gunkel G (2011) Bank filtration in the sandy littoral zone of Lake Tegel (Berlin): structure and dynamics of the biological active filter zone and clogging processes. Limnologica 44(1):10–19CrossRefGoogle Scholar
  24. Huang T, Wei W, Su J, Zhang H, Li N (2012) Denitrification performance and microbial community structure of a combined WLA-OBCO system. PloS One 7(11):e48339CrossRefGoogle Scholar
  25. Izard D, Gavini F, Trinel PA, Leclerc H (1979) Rahnella aquatilis, nouveau member de la famille des Enterobacteriaceae. Ann Microbiol 130A:163–177Google Scholar
  26. Kalmbach S, Manz W, Wecke J, Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49:769–777CrossRefGoogle Scholar
  27. Kandra HS, Asce SM, Callaghan J, Deletic A, McCarthy DT (2015) Biologicla clogging in storm water filters. J Environ Eng 141(2):1–8CrossRefGoogle Scholar
  28. Kato Y, Asahara M, Goto K, Kasai H, Yokota A (2008) Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58:1134–1141CrossRefGoogle Scholar
  29. Kim JW, Choi H, Pachepsky YA (2010) Biofilm morphology as related to the porous media clogging. Water Res 44:1193–1201CrossRefGoogle Scholar
  30. Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A (2011) Acidovorax radicis sp. Nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 61:2589–2594CrossRefGoogle Scholar
  31. Li XY, Yang SF (2007) Influence of extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030CrossRefGoogle Scholar
  32. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004) Rothia aeria sp. Nov., Rhodococcus baikonurensis sp. Nov. and Arthrobacter russicus sp. Nov., isolated from air in the Russian space laboratory. Mir Int J Syst Evol Microbiol 54:827–835CrossRefGoogle Scholar
  33. Liao J, Fang C, Yu J, Sathyagal A, Willman E, Liu WT (2017) Direct treatment of high-strength soft drink wastewater using a down-flow hanging sponge reactor: performance and microbial community dynamics. Appl Microbiol Biot 101(14):5925–5936Google Scholar
  34. Lopes FA, Vieira MJ, Melo LF (2000) Chemical composition and activity of a biofilm during the start-up of an airlift reactor. Water Sci Technol 41:105–111Google Scholar
  35. Lyko S, Wintgens T, Al-Halbouni D, Baumgarten S, Tacke D, Drensia K (2008) Long-term monitoring of a full-scale municipal membrane bioreactor-characterisation of foulants and operational performance. J Membr Sci 317:78–87CrossRefGoogle Scholar
  36. MEGA (1993) Molecular evolutionary genetics analysis. http://www.megasoftware.net/home/download. Accessed March 2018
  37. Ministry of Water Resources of the People’s Republic of China (1999) Standard for Soil Test Method, SL 237–1999 (in Chinese). Water Power Process, BeijingGoogle Scholar
  38. Morgan JW, Forster CF, Evison L (1990) A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res 24(6):743–750CrossRefGoogle Scholar
  39. Nagata T, Fukuda R, Fukuda H, Koike I (2001) Basin-scale geographic patterns of bacterioplankton biomass and production in the subarctic Pacific, July–September 1997. J Oceanogr 57:301–313CrossRefGoogle Scholar
  40. NCBI (1988) National Center for Biotechnology Information, US National Library of Medicine. https://www.ncbi.nlm.nih.gov/. Accessed March 2018
  41. Pavelic P, Dillon PJ, Mucha M, Nakai T, Barry KE, Bestland E (2011) Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems. Water Res 45:3153–3163CrossRefGoogle Scholar
  42. Pérez-Paricio A, Carrera J (2001) Clogging and heterogeneity. In: Jensen KH (ed) Artificial recharge of groundwater. Final report, EC project ENV4-CT95-0071, Luxembourg 92-894-0186-9, EC, Brussels, pp 51–58Google Scholar
  43. Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30(9):475–484CrossRefGoogle Scholar
  44. Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996CrossRefGoogle Scholar
  45. Prommer H, Stuyfzand PJ (2005) Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer. Environ Sci Technol 39:2200–2209CrossRefGoogle Scholar
  46. Qian B, Liu L, Xiao L (2011) Comparative tests on different methods for content of soil organic matter. J Hohai University (Natural Sciences) 39(1):34–38Google Scholar
  47. Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, Vandevelde T (2000) Interrelationships between bioclogging, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells. Water Res 34(7):2110–2118CrossRefGoogle Scholar
  48. Schleifer KH, Kloos WE (1975) Isolation and characterization of Staphylococci from human skin I. Amended description of Staphylococcus epidermidis and Staphylococcus saprophyticus and description of three new species: Staphylocyccus cohnii, Staphylococcus haemolyticus, and Staphylococcus sylosus. Int J Syst Bacteriol 25(1):50–61CrossRefGoogle Scholar
  49. Segers P, Vancanneyt M, Pot B, Torck U, Hoste B, Dewettinck D, Falsen E, Kersters K, De Voss P (1994) Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. ov. as Brevundimonas diminuta comb. nov., respectively. Int J Syst Bacteriol 44(3):499–510Google Scholar
  50. Seki K, Miyazaki T, Nakano M (1996) Reduction of hydraulic conductivity due to microbial effects. Trans Jpn Soc Irrig Drain Reclam Eng 181:137–144Google Scholar
  51. Sharma SK, Babitch JA (1980) Application of Bradford’s protein assay to chick brain subcellular fractions. J Biochem Bioph Meth 2(4):247–250CrossRefGoogle Scholar
  52. Silverstein TP (2012) Falling enzyme activity as temperature rises: negative activation energy or denaturation? J Chem Educ 89:1097–1099CrossRefGoogle Scholar
  53. Smet C, Derlinden EV, Mertens L, Noriega E, Impe JFV (2015) Effect of cell immobilization on the growth dynamics of Salmonella typhimurium and Escherichia coli at suboptimal temperatures. Int J Food Microbiol 208:75–83CrossRefGoogle Scholar
  54. Thullner M (2010) Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems. Ecol Eng 36:176–196CrossRefGoogle Scholar
  55. Tsuneda S, Park S, Hayashi H, Jung J, Hirata A (2001) Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Water Sci Technol 43:197–204Google Scholar
  56. Vandevivere P, Baveye P (1992) Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Appl Environ Microbiol 58(5):1690–1698Google Scholar
  57. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286Google Scholar
  58. Warren E, Bekins BA (2015) Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site. J Contam Hydrol 182:183–193CrossRefGoogle Scholar
  59. Wilén BM, Lumley D, Mattsson A, Mino T (2008) Relationship between floc composition and flocculation and setting properties studies at a full scale activated sludge plant. Water Res 42:4404–4418CrossRefGoogle Scholar
  60. Xia L, Zheng XL, Duan YH, Peng T (2014b) Analysis of process and mechanism of bioclogging in aqueous media. J Hydraul Eng 45(6):749–754Google Scholar
  61. Xia L, Zheng XL, Shao HB, Xin J, Peng T (2014a) Influences of environmental factors on bacterial polymeric substances production in porous media. J Hydrol 519:3153–3162CrossRefGoogle Scholar
  62. Xia L, Zheng XL, Shao HB, Xin J, Sun ZY, Wang LY (2016) Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns. J Hydrol 535:293–300CrossRefGoogle Scholar
  63. Yang SY, Ngwenya BT, Butler IB, Kurlanda H, Elphick SC (2013) Coupled interactions between metals and bacterial biofilms in porous media: implications for biofilm stability, fluid flow and metal transport. Chem Geol 337-338:20–29CrossRefGoogle Scholar
  64. Zhang JW, Xu HK (2009) Dagu River area source pollution of agricultural fertilizer and its countermeasure. J Anhui Agri Sci 37(16):7632–7633 7657Google Scholar
  65. Zhang WJ, Yang P, Xiao P, Xu SW, Liu YY, Liu F, Wang DS (2015) Dynamic variation in physicochemical properties of activated sludge floc from different WWTPs and its influence on sludge dewaterability and settleability. Colloid Surface A 467:124–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lu Xia
    • 1
  • Zongjun Gao
    • 1
  • Xilai Zheng
    • 2
  • Jiuchuan Wei
    • 1
  1. 1.College of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations