Review: Micro-organic contaminants in groundwater in China

  • Weihong Dong
  • Wei Xie
  • Xiaosi Su
  • Chuanlei Wen
  • Zhipeng Cao
  • Yuyu Wan
Paper
  • 117 Downloads

Abstract

Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.

Keywords

Contamination Groundwater Environmental behavior Review China 

Revue: Polluants micro-organiques dans les eaux souterraines en Chine

Résumé

Les polluants micro-organiques (MOs) dans les eaux souterraines, qui peuvent avoir des effets indésirables sur la santé humaine et sur les écosystèmes dans le monde entier, font l’objet d’une attention de plus en plus vive en Chine. De nombreuses recherches ont été conduites afin d’examiner leurs sources, occurrences et comportement dans les aquifères. Cet article propose une revue des principales sources, de la distribution, des concentrations et du comportement d’une vaste gamme de MOs dans les eaux souterraines en Chine. Ces MOs incluent des polluants organiques reconnus comme persistants—hydrocarbures aromatiques polycycliques (HAPs), hexachlorocyclohexanes (HCHs), polychlorobiphényles (PCBs), perturbateurs endocriniens (Polybromodiphényléthers (PDBEs), esters acides phtaliques (EAPs), bisphenol (BPA)—et quelques polluants engendrant une préoccupation naissante tels les pharmaceutiques et les produits de soin corporel (antibiotiques, caféine, shampooings) et composés perfluorés (PFCs). Les résultats révèlent que les MOs principaux dans les eaux souterraines sont des HAPs, des pesticides organochlorés (POCs), des PBDEs, des EAPs et des antibiotiques. De plus, certains PFCS, tel. l’acide perfluorobutanesulfonique (PFBS), l’acide perfluorobutanoïque (PFBA) et l’acide perfluorooctanoïque (PFOA) ont été seulement récemment observés dans les eaux souterraines comme polluants organiques émergents. En outre, la plupart des MOs sont présents dans les zones peuplées et industrialisées comme la côte sud-est de la Chine. Finalement, les émissions industrielles, les effluents de stations d’épuration et les eaux usées agricoles révèlent être les sources dominantes de MOs dans les eaux souterraines. Sur la base des niveaux de pollution existants, le réglementation et l’amélioration de MOs sont justifiés.

Revisión: Contaminantes microorgánicos en aguas subterráneas en China

Resumen

Los contaminantes microorgánicos (MOs) en las aguas subterráneas, que pueden tener efectos adversos sobre la salud humana y los ecosistemas en todo el mundo, están ganando una mayor atención en China. Se ha llevado a cabo una gran cantidad de investigaciones para analizar las fuentes, ocurrencias y comportamiento en los acuíferos. Este trabajo revisa las principales fuentes, distribución, concentraciones y comportamiento de una amplia gama de MOs en aguas subterráneas en China. Estos MOs incluyen contaminantes orgánicos persistentes bien establecidos—hidrocarburos aromáticos policíclicos (PAHs), hexaclorociclohexanos (HCHs), bifenilos policlorados (PCBs), sustancias químicas que interrumpen el sistema endocrino (éteres de difenilo polibromados (PBDEs), ésteres de ácido ftálico (PAEs), bisfenol A (BPA), y algunos contaminantes de interés emergente como productos farmacéuticos y de cuidado personal (antibióticos, cafeína, champús) y compuestos perfluorados (PFCs). Los resultados revelan que los MOs principales en aguas subterráneas son PAHs, plaguicidas organoclorados (OCPs), PBDEs, PAEs y antibióticos. Además, algunos PFCs como el ácido perfluorobutano sulfónico (PFBS), el ácido perfluorobutanoico (PFBA) y el ácido perfluorooctanoico (PFOA) se han observado recientemente en aguas subterráneas como contaminantes orgánicos emergentes. Además, la mayoría de los MOs se distribuyen en poblaciones y áreas industrializadas como la costa sureste de China. Finalmente, emisiones industriales, efluentes de plantas de tratamiento de aguas residuales y residuos agrícolas se encuentra que son fuentes dominantes de MOs en aguas subterráneas. Sobre la base de los niveles de contaminación existentes, la regulación y la mejora de los MOs están garantizados.

评述:中国地下水中的微生有机污染物

摘要

地下水中的微生污染物对人类健康和世界范围的生态系统产生负面影响,在中国已经越来越得到人们的重视。进行了大量的研究,以调查其在含水层中的来源、出现及特性。本文论述了中国地下水中大范围微生有机污染物的主要来源、分布、浓度及特性。这些微生有机污染物包括得到确认的持久性有机污染物(多环芳烃)、六氯化苯、多氯联苯、内分泌干扰物(聚溴二苯醚)、邻苯二甲酸酯、双酚A以及新近受到关切的一些污染物诸如药品以及个人护理用品(抗生素、咖啡因、洗发剂)及全氟化合物。结果显示,地下水中的主要微生有机污染物为多环芳烃、有机氟杀虫剂、聚溴二苯醚、邻苯二甲酸酯以及抗生素。此外,一些全氟化合物诸如全氟丁基磺酸盐、全氟烃基酸以及全氟辛酸作为新兴的污染物最近才被观测到。另外,大多数微生有机污染物分布在人口众多及工业集中的地区,如中国东南沿海地区。最后,发现工业排放、废水处理厂的废水以及农业废水成为地下水中的微生有机污染物的主要来源。根据现有的污染水平,需要对微生有机污染物的管理进行进一步的改善和提高。

Revisão: Microcontaminantes orgânicos em águas subterrâneas na China

Resumo

Microcontaminantes orgânicos (MOs) em águas subterrâneas, que podem ter efeitos adversos para saúde humana e ecosistemas no mundo inteiro, estão ganhando cada vez mais atenção na China. Uma grande quantidade de pesquisas tem sido conduzida para investigar as fontes desses contaminantes, ocorrências e comportamento em aquíferos. Este artigo revisa as principais fontes, distribuição, concentrações e comportamento de uma ampla variedade de MOs em águas subterrâneas na China. Estes MOs incluem poluentes orgânicos persistentes—hidrocarbonetos policíclicos aromáticos (HPAs), hexaclorociclohexanos (HCHs), bifenilos policlorados, químicos disruptivos do sistema endócrino (éteres de difenila polibromados ou PBDEs), ácidos ftálicos estéres (PAEs), bisfenol A (BPA), e alguns contaminantes identificados recentemente tais como farmácos e produtos de higiene pessoal (antibióticos, cafeína, shampoos) e compostos perfluorados (PFCs). Os resultados revelam que os principais microcontaminantes orgânicos em água subterrânea são HPAs, pesticidas organoclorados (OCPs), PBDEs, PAEs, e antibióticos. Além do mais, alguns PFCs, tais como ácido sulfônico perfluorbutano (PFBs), ácido perfluorbutanoico (PFBA) e ácido perfluoroctanoico (PFOA) tem sido tratados como contaminantes orgânicos de águas subterrâneas somente recentemente. Adicionalmente, a maioria dos MOs estão distribuídos em áreas populosas e industrializadas tais como a costa sudeste da China. Por fim, as emissões industriais, efluentes de estação de tratamento de residuais, e águas residuais da agricultura foram identificadas como sendo fontes dominantes de MOs em águas subterrâneas. Baseado nos níveis de poluição existentes, regulamentação e melhoramento dos MOs são necessários.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. NSFC41402209). We thank the anonymous reviewers for suggestions and improvements to the paper. We also thank Jeremy Kamen from Liwen Bianji, Edanz Group China, for editing the English text of a draft of this manuscript.

References

  1. Adams WJ, Biddinger GR, Robillard KA, Gousuch JW (1995) A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ Toxicol Chem 14(9):1569–1574CrossRefGoogle Scholar
  2. Adeel M, Song X, Wang Y, Francis D, Yang Y (2016) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119CrossRefGoogle Scholar
  3. Ahrens L, Yamashita N, Yeung LW, Taniyasu S, Horii Y, Lam PK, Ebinghaus R (2009) Partitioning behavior of per- and polyfluoroalkyl compounds between porewater and sediment in two sediment cores from Tokyo Bay. Japan Environ Sci Technol 43(18):6969–6975CrossRefGoogle Scholar
  4. Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2016) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120CrossRefGoogle Scholar
  5. Bao J, Liu W, Liu L, Jin Y, Dai J, Ran X (2011) Perfluorinated compounds in the environment and the blood of residents living near fluorochemical plants in Fuxin, China. Environ Sci Technol 45(19):8075–8080CrossRefGoogle Scholar
  6. Benskin JP, Li B, Ikonomou MG, Grace JR, Li LY (2012) Per- and polyfluoroalkyl substances in landfill leachate: patterns, time trends, and sources. Environ Sci Technol 46:11532–11540CrossRefGoogle Scholar
  7. Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67(2):292–299Google Scholar
  8. Boiteux V, Dauchy X, Rosin C, Munoz JF (2012) National screening study on ten perfluorinated compounds in raw and treated tap water in France. Arch Environ Contam Toxicol 63(1):1–12CrossRefGoogle Scholar
  9. Cai MH, Zhao Z, Yang HZ, Yin Z, Hong Q, Sturm R (2012) Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the east to South China Sea. Environ Pollut 161:162–169CrossRefGoogle Scholar
  10. Caupos E, Mazellier P, Croue JP (2011) Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight. Water Res 45(11):3341–3350CrossRefGoogle Scholar
  11. Chang S, Zhang X, Liu Y (2016) Distribution characteristics and pollution status of phthalate esters in the groundwater of Hutuo River pluvial fan. Environ Sci 37(8):3041–3048Google Scholar
  12. Chen S, Jiao XC, Gai N, Li XJ, Wang XC, Lu GH (2016) Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ Pollut 211:124–131CrossRefGoogle Scholar
  13. Cui J, Du J, Wang X (2014) Contamination characteristics in surface water and coastal groundwater of Hunhe River. Acta Ecol Sin 34(7):1860–1869Google Scholar
  14. Ding Z (2015) Occurrence and distribution of pharmaceutical and personal care products in typical pollution sources and groundwater in the Pearl River Delta (in Chinese). PhD Thesis, Hunan Normal University, Changsha, ChinaGoogle Scholar
  15. Dodgen LK, Kelly WR, Panno SV (2016) Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters. Sci Total Environ 578:281–289CrossRefGoogle Scholar
  16. Dong DL, Sun WJ, Zhu ZC, Xi S, Lin G (2013) Groundwater risk assessment of the third aquifer in Tianjin city, China. Water Resour Manag 27(8):3179–3190CrossRefGoogle Scholar
  17. Drillia P, Stamatelatou K, Lyberatos G, (2005) Fate and mobility of pharmaceuticals in solid matrices. Chemosphere 60 (8):1034-1044CrossRefGoogle Scholar
  18. Du J, Hu H, Yang J, Li Z, Han W, Zhu X (2016) Analysis and risk assessment of endocrine disruptors in groundwater in Xuzhou region. Admin Tech Environ Monit 28(6):38–40Google Scholar
  19. Duo K, Wang L, Zhu X, Peng H, Shen J (2004) An investigation and analysis of toxic organic traces in drinking water sources in Henan. J Saf Environ 4(01):32–35Google Scholar
  20. Gan Z (2014) Distribution, fate, and photolysis mechanism of artificial sweeteners in environment (in Chinese). PhD Thesis, Nankai University, Nankai Qu, ChinaGoogle Scholar
  21. Gao J, Li W, Li G, Huang J, Yu G (2016) Preliminary investigation on perfluorinated compounds in groundwater in some areas of Beijing, China. Asian J Ecotoxicol 2016(2):355–363Google Scholar
  22. GB5749 (2006) Standards for drinking water quality of the People’s Republic of China (2006). http://www.nhfpc.gov.cn/zwgkzt/wsbysj/200804/30005.shtml. Accessed March 2018
  23. Giesy JP, Naile JE, Khim JS, Jones PD, Newsted JL (2010) Aquatic toxicology of perfluorinated chemicals. Rev Environ Contam Toxicol 202:1–52Google Scholar
  24. Gooddy DC, Mathias SA, Harrison I, Lapworth DJ, Kim AW (2007) The significance of colloids in the transport of pesticides through chalk. Sci Total Environ 385(1–3):262–271CrossRefGoogle Scholar
  25. Houtz EF, Higgins CP, Field JA, Sedlak DL (2013) Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ Sci Technol 47(15):8187–8195CrossRefGoogle Scholar
  26. Hu H, Wang C, Guo M (2005) The present status of environmental pollution by pharmaceuticals and personal care products (PPCPs). Ecol Environ 14(6):947–952Google Scholar
  27. Hu Y, Qi S, Lan L, Zhang WJ, Qi SL (2010) Distribution and health risk assessment of HCHs and DDTs in underground river of karst, Southwest China. China Environ Sci 30(6):802–807Google Scholar
  28. Huang G, Sun J, Wang S, Hai-Yan DU, Yao-Dong LU, Zhi BF (2008) Elementary research of organochlorine pesticide in groundwater of Pearl River Delta. J Agro-Environ Sci 27(4):1471–1475Google Scholar
  29. Huang D, He J, Yang L, He B (2016) Distribution characteristics of pharmaceuticals and personal care products in water and soil environment in reclaimed water irrigation area of a city. China Environ Sci 36(9):2614–2623Google Scholar
  30. Javid A, Mesdaghinia A, Nasseri S, Mahvi AH, Alimohammadi M, Gharibi H (2016) Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. J Environ Health Sci Eng 14(1):1–5CrossRefGoogle Scholar
  31. Jiang L, Xu Q, Liang C (2013) Detection and risk assessment of phthalates in groundwater in a country of Jiangsu Province. Environ Monit China 29(4):5–10Google Scholar
  32. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a] pyrene. Int Biodeterior Biodegrad 45:57–88CrossRefGoogle Scholar
  33. Jurado A, Vàzquez-Suñé E, Carrera J, López DAM, Pujades E, Barceló D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440(3):82–94CrossRefGoogle Scholar
  34. Kang B, Wang D, Du S (2016) Source identification and degradation pathway of multiple persistent organic pollutants in groundwater at an abandoned chemical site in Hebei, China. Exposure Health 9(2)135–141Google Scholar
  35. Keshavarzi M, Baker A, Kelly BFJ, Andersen MS (2017) River–groundwater connectivity in a karst system, Wellington, new South Wales. Austral Hydrogeol J 25:557–574CrossRefGoogle Scholar
  36. Kong X, Miao Y, Luan R, Qin S, CAGS (2016a) Contamination of persistent organic pollutants in the offshore groundwater of Chaoyangxi River in Nanning City, China. Earth Environ 44(4):406–413Google Scholar
  37. Kong L, Kadokami K, Duong HT, Hong TCC (2016b) Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China. Chemosphere 165:221–230CrossRefGoogle Scholar
  38. Koroša A, Auersperger P, Mali N (2016) Determination of micro-organic contaminants in groundwater (Maribor, Slovenia). Sci Total Environ 571:1419–1431CrossRefGoogle Scholar
  39. Lan J (2014) Study on migration, partitioning and ecological risk of PAHs in a karst Underground River system in Southwest China (in Chinese). PhD Thesis, Southwest University, El Paso, TXGoogle Scholar
  40. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163(4):287–303CrossRefGoogle Scholar
  41. Lapworth DJ, Baran N, Stuart ME, Manamsa K, Talbot J (2015) Persistent and emerging micro-organic contaminants in chalk groundwater of England and France. Environ Pollut 203:214–225CrossRefGoogle Scholar
  42. Li B, Ren Z, Chen H, Cao X, Fei L (2007) Residues of organochlorine pesticides in shallow groundwater of agricultural region in Taihu Basin. J Agro-Environ Sci 26(5):1714–1718Google Scholar
  43. Li FS, Sun HW, Hao ZN, He N, Zhao L, Zhang T, Sun T (2011) Perfluorinated compounds in Haihe River and Dagu Drainage Canal in Tianjin, China. Chemosphere 84(2):265–271CrossRefGoogle Scholar
  44. Li J, Fu J, Zhang H, Li Z, Ma Y, Wu M (2013a) Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: a field study along the Chaobai River, Beijing. Sci Total Environ 450–451C:162–168CrossRefGoogle Scholar
  45. Li J, Jiang L, Liu X, Lv J (2013b) Adsorption and aerobic biodegradation of four selected endocrine disrupting chemicals in soil-water system. Int Biodeterior Biodegrad 76(1):3–7CrossRefGoogle Scholar
  46. Li Z, Xiang X, Li M, Ma Y, Wang J, Liu X (2015) Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China. Ecotoxicol Environ Safety 119:74–80CrossRefGoogle Scholar
  47. Li X, Shang X, Luo T, Du X, Wang Y, Xie Q, Matsuura N, Chen J, Kadokami K, (2016) Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environmental Pollution 218:739-748CrossRefGoogle Scholar
  48. Liu Q (2014) Occurrence and distribution of Perfluorinated compounds in typical pollution sources and groundwater in the Pearl River Delta (in Chinese). PhD Thesis, Lanzhou Jiaotong University, Lanzhou, ChinaGoogle Scholar
  49. Liu B, Liu X (2004) Direct photolysis of estrogens in aqueous solutions. Sci Total Environ 320(2–3):269–274CrossRefGoogle Scholar
  50. Liu Z, Lu Y, Wang T, Wang P, Li Q, Johnson AC (2016) Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: spatial distribution around a mega-fluorochemical industrial park, China. Environ Int 91:69–77CrossRefGoogle Scholar
  51. Liu Z, Lu Y, Wang P, Wang T, Liu S, Johnson AC (2017) Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Sci Total Environ 580:1247–1256CrossRefGoogle Scholar
  52. Locatelli M, Sciasci F, Cifelli R, Malatesta L, Bruni P, Croce F (2016) Analytical methods for the endocrine disruptor compounds determination in environmental water samples. J Chromatogr A 1434:1–18CrossRefGoogle Scholar
  53. Loffler M, Gembarovic J (2005) A new way of modeling transport processes. Thermal Conductivity 123–133Google Scholar
  54. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157(2):561–568CrossRefGoogle Scholar
  55. Luo Q, Sun L, Zhang Y (2011) Health risk assessment of persistent organochlorine pollutants in groundwater from Xihe River area. Res Soil Water Conserv 18(6):119–124Google Scholar
  56. Luo W, Wang S, Fei Q, Sun L (2016) Advances and prospects of pharmaceutical and personal care products in drinking water. J Tianjin Chengjian Univ 22(5):344–351Google Scholar
  57. Ma W, Nie C, Chen B, Cheng X, Lun X, Zeng F (2015) Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater. J Environ Sci 31(5):154–163CrossRefGoogle Scholar
  58. Mali N, Cerar S, Koroša A, Auersperger P (2017) Passive sampling as a tool for identifying micro-organic compounds in groundwater. Sci Total Environ 593–594:722–734CrossRefGoogle Scholar
  59. Manamsa K, Lapworth DJ, Stuart ME (2016a) Temporal variability of micro-organic contaminants in lowland chalk catchments: new insights into contaminant sources and hydrological processes. Sci Total Environ 568:566CrossRefGoogle Scholar
  60. Manamsa K, Crane E, Stuart M, Talbot J, Dan L, Hart A (2016b) A national-scale assessment of micro-organic contaminants in groundwater of England and Wales. Sci Total Environ 568:712–726CrossRefGoogle Scholar
  61. Menchen A, Heras JL, Alday JJ (2017) Pesticide contamination in groundwater bodies in the Júcar River European Union pilot basin (SE Spain). Environ Monit Assess 189(4):146CrossRefGoogle Scholar
  62. Miege C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants: conception of a database and first results. Environ Pollut 157(5):1721–1726CrossRefGoogle Scholar
  63. Mirasole C, Di Carro M, Tanwar S, Magi E (2016) Liquid chromatography–tandem mass spectrometry and passive sampling: powerful tools for the determination of emerging pollutants in water for human consumption. J Mass Spectrom 51(9):814–820CrossRefGoogle Scholar
  64. Mu X, Huang Y, Li X (2016) The occurrence of persistent organic pollutants in China and their environmental risk to fish: a review. Chin J Pest Sci 18(1):12–27Google Scholar
  65. Peng X, Ou W, Wang C, Wang Z, Huang Q, Jin J, Tan J (2014) Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci Total Environ 490:889–898CrossRefGoogle Scholar
  66. Pitarch E, Cervera MI, Portolés T, Ibáñez M, Barreda M, Renaupruñonosa A, Morell I, López F, Albarrán F, Hernández F (2016) Comprehensive monitoring of organic micro-pollutants in surface and groundwater in the surrounding of a solid-waste treatment plant of Castellón. Spain Total Environ 548:211–220CrossRefGoogle Scholar
  67. Qi Y, Huo S, Hu S, Xi B, Su J, Tang Z (2016) Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China. Environ Earth Sci 75(5):1–12CrossRefGoogle Scholar
  68. Qiu S, Ruan X, Hu X, Chen J, Bai Y, Tang X (2008) Investigation and solution study of main industry-poisonous chemical pollution of drinking water resources in Zhuhai. Modern Prevent Med 13:2420–2422Google Scholar
  69. Qiu B, Xiang W, Li Y (2016) A review on detection and removal processes of typical pharmaceuticals and personal care products (PPCPs) in aqueous environment. Environ Sci Technol 29(6):70–75Google Scholar
  70. Ratola N, Cincinelli A, Alves A, Katsoyiannis A (2012) Occurrence of organic micro contaminants in the wastewater treatment process: a mini review. J Hazard Mater 239–240:1–18CrossRefGoogle Scholar
  71. Reh R, Licha T, Geyer T, Nödler K, Sauter M (2013) Occurrence and spatial distribution of organic micro-pollutants in a complex hydrogeological karst system during low flow and high flow periods, results of a two-year study. Total Environ 443:438–445CrossRefGoogle Scholar
  72. Schaider LA, Rudel RA, Ackerman JM, Dunagan SC, Brody JG (2014) Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci Total Environ 468–469:384–393CrossRefGoogle Scholar
  73. Shan H (2014) Geochemical behavior of PBDEs and their in situ measurement in soil–groundwater system in the sewage irrigation area (in Chinese). PhD Thesis, China University of Geosciences, BeijingGoogle Scholar
  74. Shan H, Ma T, Du Y, Ning G, Cong X (2013) Distribution of PBDEs in soil and water from Hetao agriculture irrigation area. Environ Sci Technol. 36(6):37–41Google Scholar
  75. Shao Y (2014) The Occurrence and Fate of PAHs in the Guozhuang Karst Water System of Northern China (in Chinese). PhD Thesis, China University of Geosciences, BeijingGoogle Scholar
  76. Stuart M, Dan L (2013) Emerging organic contaminants in groundwater, vol 4. Springer, Heidelberg, pp 259–284Google Scholar
  77. Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21CrossRefGoogle Scholar
  78. Stuart ME, Lapworth DJ, Thomas J, Edwards L (2014) Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. Sci Total Environ 468:564–577CrossRefGoogle Scholar
  79. Sun Y (2012) Study on migration and transformation characteristics of OCPs and PAHs in epikarst system (in Chinese). PhD Thesis, Southwest University, El Paso, TXGoogle Scholar
  80. Sun HW, Li FS, Zhang T, Zhang X, He N, Song Q, Zhao LJ, Sun LN, Sun TH (2011) Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: mass flows and source analysis. Water Res 45(15):4483–4490CrossRefGoogle Scholar
  81. Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N (2005) Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J Chromatogr A 1093(1–2):89–97CrossRefGoogle Scholar
  82. USEPA (1997) Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) final report. https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-and-testing-advisory-committee-edstac-final. Accessed March 2018
  83. USEPA (1999) Pharmaceuticals & Personal Care Products in the environment: an emerging concern? USEPA, Washington, DCGoogle Scholar
  84. Wang F, Shih K (2011) Adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Res 45:2925–2930CrossRefGoogle Scholar
  85. Wang S, Zhang J (2005) Review on the current contaminative status analysis on environmental endocrine disrupting chemicals in China. J Environ Pollut Control 27(3):228–231Google Scholar
  86. Wang C, Liu H, Cai H, Liang Y, Liang HC, Xiong QH (2009) Source analysis and detection of trace phthalate esters in groundwater in Wuhan. Environ Sci Technol 32(10):118–123Google Scholar
  87. Wang B, Iino F, Yu G, Huang J, Morita M (2010) The pollution status of emerging persistent organic pollutants in China. Environ Eng Sci 27(3):215–225CrossRefGoogle Scholar
  88. Wang L, Zhang Z, Zhang XZ, Sun S, Sun H (2011) Removal of perfluorinated compounds by wastewater treatment plants. Acta Sci Circumst 31(7):1363–1368Google Scholar
  89. Wang TY, Khim JS, Chen CL, Naile JE, Lu Y, Kannan K, Park J, Luo W, Jiao WT, Hu WY, Giesy JP (2012) Perfluorinated compounds in surface waters from northern China: comparison to level of industrialization. Environ Int 42:37–46CrossRefGoogle Scholar
  90. Wang Y, Wang T, Fu J, Ruan T, Qu G, Wang C, Zeng L, Liu Q, Yuan B, Jiang G (2013a) Recent research progresses of emerging organic pollutants. Chem Bull 76(1):3–14Google Scholar
  91. Wang B, Deng S, Huang J, Yu G (2013b) Environmental risk assessment and control of emerging contaminants in China. Environ Chem 32(7):1129–1136Google Scholar
  92. Wang X, Jiao X, Zhu X, Liu Q, Liu J, Yin X (2014) Distribution characteristics of PBDEs in surface and ground waters of electronic waste dismantling sites and surrounding area. Ecol Environ Sci 23(6):1027–1033Google Scholar
  93. Wang T, Wang P, Meng J, Liu S, Lu Y, Khim JS, Giesy JP (2015) A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere 129(1):87–99CrossRefGoogle Scholar
  94. Wei L, Guo F, Wang J, Kang C (2011) Distribution characteristics of organochlorine pesticides in karst subterranean river in Liuzhou. Carsolog Sin 30(1):16–21Google Scholar
  95. Wei MC, Zhong WJ, Zhao LX, Zhu LY (2013) Distribution and profile of perfluorinated compounds in the environment around a fluorine chemistry industrial park in South China. Acta Sci Circumst 33(7):1989–1995Google Scholar
  96. Wells MJM (2006) Log Dow: key to understanding and regulating wastewater derived contaminants. Environ Chem 3(6):439–449CrossRefGoogle Scholar
  97. Worrall F, Kolpin DW (2004) Aquifer vulnerability to pesticide pollution combining soil, land-use and aquifer properties with molecular descriptors. J Hydrol 293:191–204CrossRefGoogle Scholar
  98. Xiao F, Simcik MF, Halbach TR, Gulliver JS (2015) Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: migration and implications for human exposure. Water Res 72:64–74CrossRefGoogle Scholar
  99. Xie SW, Wang TY, Liu SJ, Jones KC, Sweetman AJ, Lu YL (2013) Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environ Int 52:1–8CrossRefGoogle Scholar
  100. Xu Y (2014) Pollution characteristics of antibiotics, antibiotic resistance Bacteria and genes in Wangyanggou River, ShiJiaZhuang (in Chinese). MSc Thesis, Shandong Agricultural University, Tai’an, ChinaGoogle Scholar
  101. Xu J, Zhu H, Xu H, Liu CH, Zhang Z (2009) Study on organic pollution of karst underground water in Jinan spring area. Carsolog Sin 28(3):249–254Google Scholar
  102. Xu X, Sun Y, Alam MJ (2013) Preliminary study on OCPs in water body of the Laolongdong underground river basin in Chongqing. Carsolog Sin 32(2):189–194Google Scholar
  103. Yan H, Cousins IT, Zhang C, Zhou Q (2015) Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci Total Environ 524–525:23–31CrossRefGoogle Scholar
  104. Yao Y, Zhu H, Li B, Hu H, Zhang T, Yamazaki E, Taniyasu S, Yamashita N, Sun H (2014) Distribution and primary source analysis of per- and poly-fluoroalkyl substances with different chain lengths in surface and groundwater in two cities, North China. Ecotoxicol Environ Safety 108(1):318CrossRefGoogle Scholar
  105. You C, Jia C, Pan G (2010) Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment–water interface. Environ Pollut 158:1343–1347CrossRefGoogle Scholar
  106. Yu G, Liu H, Zhang T, Su JW, Sheng MT, Li W (2007) Assessment of the organic pollution and its risk for the surficial groundwater in Hangzhou City. Resour Surv Environ 28(3):198–204Google Scholar
  107. Zhang D (2010) Characteristics of sorption of phthalic acid esters on shallow aquifer sediment (in Chinese). MSc Thesis, China University of Geosciences, BeijingGoogle Scholar
  108. Zhang J, Qi S, Yao H (2011a) The distribution characteristics of OCPs residues in karst underground river of Guangxi. J Environ Pollut Control 33(4):54–57Google Scholar
  109. Zhang Y, Sun J, Chen X, Huang G, Jing J, Liu J, Zhang Y (2011b) The distribution characteristics and source of phthalic acid esters in groundwater of Dongguan. J Environ Pollut Control 33(8):57–61Google Scholar
  110. Zhang T, Sun H, Lin Y, Wang L, Zhang X, Liu Y, Geng X, Zhao L, Li F, Kannan K (2011c) Perfluorinated compounds in human blood, water, edible freshwater fish, and seafood in China: daily intake and regional differences in human exposures. J Agric Food Chem 59(20):11168–11176CrossRefGoogle Scholar
  111. Zhang YL, Dang JY, Lv Y, Wang Z (2013a) Evaluation of migration abilities of reproductive health estrogens in the subsurface environment. Sci Technol Rev 31(22):31–35Google Scholar
  112. Zhang L, Pan F, Liu X, Yang L, Jiang X, Yang J, Shi W (2013b) Multi-walled carbon nanotubes as sorbent for recovery of endocrine disrupting compound-bisphenol F from wastewater. Chem Eng J 218:238–246CrossRefGoogle Scholar
  113. Zhang G, Wang X, Li Z (2014) Analysis of organochlorine pesticide concentrations and pollution characteristics in groundwater of Yueyang City. Water Resour Protect 30(2):52–56Google Scholar
  114. Zhou A (2015) Research on the migration and transformation mechanism and remediation technique of sulfa antibiotics in phreatic water (in Chinese). PhD Thesis, Jilin University, Changchun, ChinaGoogle Scholar
  115. Zhang X (2015) Rational use and substitution of veterinary antibiotics. China Animal Industry 2015(22):45–46Google Scholar
  116. Zhou Z, Shi YL, Li WH, Xu L, Cai Y (2012) Perfluorinated compounds in surface water and organisms from Baiyangdian Lake in North China: source profiles, bioaccumulation and potential risk. Bull Environ Contam Toxicol 89(3):519–524CrossRefGoogle Scholar
  117. Zhu H, Zeng Q, Xu J, Liu Z, Wang W, Wei C (2014) On organic pollution of shallow groundwater in southern plain of Huaihe River basin (Shandong section). J Geol 38(3):511–516Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Weihong Dong
    • 1
    • 2
  • Wei Xie
    • 1
    • 2
  • Xiaosi Su
    • 1
    • 2
  • Chuanlei Wen
    • 1
    • 2
  • Zhipeng Cao
    • 1
    • 2
  • Yuyu Wan
    • 1
    • 2
  1. 1.Key Laboratory of Groundwater Resources and Environments, Ministry of EducationJilin UniversityChangchunPeople’s Republic of China
  2. 2.Institute of Water Resources and EnvironmentJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations