Review: Water–rock interactions and related eco-environmental effects in typical land subsidence zones of China

Paper

Abstract

Land subsidence is common in some regions of China. Various eco-environmental problems have arisen due to changes in water–rock interactions in these subsided areas, for which a comprehensive understanding of the hydrogeological setting is needed. This paper presents the general status of land subsidence in three typical subsided areas of China through the compilation of relevant data, and reviews some typical changes in the water–rock interactions in subsided areas along with related eco-environmental issues. It is found that the subsidence development and distribution are controlled by the groundwater-withdrawal intensity externally, and by the thickness and compressibility of unconsolidated sediments internally. The physical changes and related effects of water–rock interactions in subsided areas include: (1) the decreased ground elevation that caused floods, waterlogged farmland, etc.; (2) the differential subsidence that caused ground fissures; and (3) the change of seepage field that caused substantial reduction of the water resource. Chemically, the changes and related effects of water–rock interactions include: (1) the change to the chemical environment or processes due to the hydrogeologic structure alteration, which caused groundwater pollution; and (2) hydrologic mixing (seawater intrusion, artificial recharge; exchange with adjacent aquifers or aquitards), which degraded the groundwater quality. Further research on the subsided areas in China is suggested to reveal the mechanisms regarding biological and gaseous (meteorological) changes from the perspective of interacting systems among water, rocks, biological agents and gases.

Keywords

Subsidence Groundwater exploration Water–rock interaction China 

Revue: Interactions eau–roche et effets éco-environnementaux associés dans des zones typiques de subsidence de Chine

Résumé

La subsidence des terrains est. commune dans quelques régions de Chine. Divers problèmes socio-environnementaux sont apparus suite aux changements d’interactions eau–roche dans ces zones de subsidence, pour lesquelles une compréhension détaillée du fonctionnement hydrogéologique est. nécessaire. Cet article présente le statut général de la subsidence des terraines dans trois zones d’affaissements typiques de Chine au travers d’une compilation de données pertinentes, et une revue de quelques changements typiques des interactions eau–roche des zones affaissées en lien avec des problématiques éco-environnementales. Il a été trouvé que le développement de la subsidence et sa distribution sont contrôlés en externe par l’intensité de l’exploitation des eaux souterraines et en interne par l’épaisseur et la compressibilité des sédiments non consolidés. Les changements physiques et les effets en lien avec les interactions eau–roche dans les zones de subsidence incluent: (1) la diminution de l’altitude du sol qui cause des crues et l’engorgement des terres agricoles, etc.; (2) la subsidence différentielle qui cause des fissures dans le sol; et (3) le changement de drainage des champs qui entraîne une diminution importante des ressources en eau. Chimiquement, les changements et effets associés aux interactions eau-roche comprennent: (1) le changement de l’environnement chimique ou des processus du fait de l’altération de la structure hydrogéologique, ce qui peut causer une pollution des eaux souterraines; (2) un mélange d’eau (intrusion d’eau de mer, recharge artificielle; échange avec les aquifères adjacents ou aquitards), ce qui dégrade la qualité des eaux souterraines.D’autres recherches sur les zones de subsidence en Chine semblent montrer les mécanismes en relation avec les changements biologiques et gazeux (météorologiques) du point de vue des interactions eau, roche, agents biologiques et gaz.

Revisión: Las interacciones agua–roca y los efectos eco-ambientales relacionados en típicas zonas de subsidencia del terreno de China

Resumen

La subsidencia del terreno es común en algunas regiones de China. Varios problemas eco-ambientales han surgido debido a los cambios en las interacciones agua–roca en estas áreas hundidas, para lo cual se necesita una comprensión integral del entorno hidrogeológico. Este artículo presenta el estado general de la subsidencia del terreno en tres áreas típicas de China mediante la recopilación de datos relevantes, y la revisión de algunos cambios típicos en las interacciones agua–roca en áreas de subsidencia junto con los problemas ambientales relacionados. Se encuentra que el desarrollo y la distribución de la subsidencia están controlados, externamente por la intensidad de extracción de agua subterránea, e internamente por el espesor y la compresibilidad de los sedimentos no consolidados. Los cambios físicos y los efectos relacionados de las interacciones agua–roca en las áreas con subsidencia incluyen: (1) la disminución de la elevación del terreno que causa inundaciones, tierras de cultivo anegadas, etc. (2) la subsidencia diferencial que causa fisuras en el suelo; y (3) el cambio del área de filtración que causa una reducción sustancial del recurso hídrico. Químicamente, los cambios y los efectos relacionados de las interacciones agua-roca incluyen: (1) el cambio en el ambiente o procesos químicos debido a la alteración de la estructura hidrogeológica, que causa la contaminación del agua subterránea; y (2) mezcla hidrológica (intrusión de agua de mar, recarga artificial, intercambio con acuíferos adyacentes o acuitardos), lo que degrada la calidad del agua subterránea. Se sugiere realizar más investigaciones sobre las áreas de subsidencia en China para relevar los mecanismos relacionados con los cambios biológicos y gaseosos (meteorológicos) desde la perspectiva de los sistemas que interactúan entre el agua, las rocas, los agentes biológicos y los gases.

综述: 中国典型地面沉降区的水–岩相互作用及其生态环境效应

摘要

摘要 地面沉降在中国的很多地区是一种普遍的环境地质问题。在这些地面沉降区,水–岩相互作用的变化已经引发了各种生态环境问题,因此需要对水文地质背景有一个综合的理解。本文通过相关数据资料的整合,描述了中国三个典型地面沉降区的沉降现状,综述了这些地区一些典型的水–岩相互作用变化及其相应的生态环境问题。研究发现,地下水开采强度为地面沉降演化和空间分布的外因,而松散沉积物的厚度及压缩性为其内因。在沉降区,水–岩相互作用在物理方面的变化及相关的生态环境效应包括:(1)地面高程的下降,会引发洪水和水涝地等问题;(2)差异性的沉降,会引发地裂缝;(3)渗流场的改变,会引发地下水资源的显著减少。而在化学方面,水-岩相互作用的变化及相关的生态环境效应包括:(1)因水文地质结构改变而引起的化学环境或过程的变化,会引发地下水污染;(2)水文混合过程的发生(海水入侵、人工回灌补给、相邻含水层或弱透水层的补给),会引起地下水质的恶化。将来的研究建议从水-岩(土)-生-气相互作用系统的理念,来揭示中国地面沉降区关于生物和气候方面变化的机制。

Revisão: Interações água–rocha e efeitos eco-ambientais relacionados em zonas típicas de subsidência de terreno da China

Resumo

Resumo Subsidência de terreno é comum em algumas regiões da China. Muitos problemas eco-ambientais surgiram devido às mudanças nas interações água–rocha nessas áreas que sofreram subsidência, para as quais é necessária uma compreensão abrangente do cenário hidrogeológico. Este artigo apresenta a situação geral de subsidência de terreno, em três áreas típicas da China, por meio da compilação de dados relevantes; e analisa algumas mudanças específicas nas interações água–rocha em áreas que sofreram subsidência, relacionando com questões eco-ambientais. Verificou-se que o desenvolvimento e a distribuição de subsidência são controlados, externamente, pela intensidade da explotação de águas subterrâneas; e, internamente, pela espessura e compressibilidade de sedimentos não consolidados. As mudanças físicas e os efeitos relacionados com as interações água–rocha, em áreas subsidiadas, incluem: (1) a diminuição da elevação do solo, podendo provocar inundações, alagamento de terras agricultáveis, etc.; (2) a subsidência diferencial, que causa fissuras terrestres; e (3) a mudança do campo de infiltração, que provoca redução substancial do recurso hídrico. Quimicamente, as mudanças e os efeitos relacionados com as interações água-rocha incluem: (1) a mudança para o meio ambiente químico ou processos devido à alteração da estrutura hidrogeológica, que causa a poluição das águas subterrâneas; e (2) mistura hidrológica (intrusão salina, recarga artificial, troca com aquíferos ou aquitardos adjacentes), o que degrada a qualidade da água subterrânea. Pesquisas adicionais sobre as áreas subsidiadas na China são sugeridas para revelar os mecanismos de mudanças biológicas e gasosas (meteorológicas) a partir da perspectiva dos sistemas de interação entre água, rochas, agentes biológicos e gases.

Notes

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (No. 41630318), the Regional Guiding Special Project of China University of Geosciences (CUGQYZX1711), and the China Geological Survey Project (121201001000150121).

References

  1. Barends FBJ, Brouwer FJJ, Schroder FH (1995) Land subsidence, natural causes, measuring techniques, the Groningen gasfields. IAHS Publ 234, IAHS, Wallingford, UK, 409 ppGoogle Scholar
  2. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164CrossRefGoogle Scholar
  3. Biot MA (1954) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–191CrossRefGoogle Scholar
  4. Biot MA (1956) General solution of the equation of elasticity and consolidation for porous material. J Appl Mech 26:91–96Google Scholar
  5. Bouwer H (1977) Land subsidence and cracking due to groundwater depletion. Ground Water 15:358–364CrossRefGoogle Scholar
  6. Budhu M, Adiyaman IB (2010) Mechanics of land subsidence due to groundwater pumping. Int J Numer Anal Methods Geomech 34:1459–1478CrossRefGoogle Scholar
  7. Burbey TJ (2006) Three-dimensional deformation and strain induced by municipal pumping, part 2: numerical analysis. J Hydrol 330(3–4):422–434Google Scholar
  8. Burbey TJ, Warner SM, Blewitt G, Bell JW, Hill E (2006) Three-dimensional deformation and strain induced by municipal pumping, part 1: analysis of field data. J Hydrol 319(1–4):123–142CrossRefGoogle Scholar
  9. Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 54(2):143–147CrossRefGoogle Scholar
  10. Chen CX, Pei SP, Jiao JJ (2003) Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11:275–287CrossRefGoogle Scholar
  11. Chen M, Tomas R, Li ZH, Motagh M, Li T, Hu LY, Gong HL, Li XJ, Yu J, Gong XL (2016) Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens 8(6):468CrossRefGoogle Scholar
  12. Cheng ZS, 2015. Chemical and isotopic response to intensive groundwater exploitation and its implications: case study in the piedmont plain, Shijiazhuang. MSc Thesis, Chinese Academy of Geological Sciences, BeijingGoogle Scholar
  13. Cheng ZS, Zhang YB, Su C, Chen ZY (2017) Chemical and isotopic response to intensive groundwater abstraction and its implications on aquifer sustainability in Shijiazhuang, China. J Earth Sci 28(3):523–534CrossRefGoogle Scholar
  14. Du Y, Ma T, Xiao C, Liu YJ, Chen LZ, Yu HT (2017) Water–rock interactions during the diagenesis of mud and its prospect in hydrogeology. Int Biodeterior Biodegrad.  https://doi.org/10.1016/j.ibiod.2017.03.020
  15. Duan YH (1998) Research status on land subsidence and sustainable development in the 21st century of China (in Chinese). Chin J Geol Hazard Control 9(2):1–5Google Scholar
  16. Galloway DL, Burbey TJ (2011) Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol J 19:1459–1486CrossRefGoogle Scholar
  17. Gambolati G, Teatini P, Ferronato M (2005) Anthropogenic land subsidence. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Chichester, UKGoogle Scholar
  18. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200CrossRefGoogle Scholar
  19. Gong SL, Zhao HY, Dai SB, Yang SL (2005) The effect of land subsidence in the urban calamity system of Shanghai. Proc 7th Int Symp Land Subsidence 0032:844–850Google Scholar
  20. He QC, Ye XB, Liu WB, Li ZM, Li C (2005) Land subsidence in the North China Plain (NCP). Proc 7th Int Symp Land Subsidence 1:18–29Google Scholar
  21. He QC, Ye XB, Li ZM, Liu WB (2006a) The status and prevention strategy of land subsidence in China (in Chinese). Geol J China Univ 12(2):161–168Google Scholar
  22. He QC, Liu WB, Li ZM (2006b) Land subsidence survey and monitoring in the North China Plain (in Chinese). J China Univ 12(2):195–209Google Scholar
  23. Helm DC (1986) COMPAC: a field-tested model to simulate and predict subsidence due to fluid withdrawal. Austral Geomechan Comput Newslett 10:18–20Google Scholar
  24. Helm DC (1994) Horizontal aquifer movement in a Theis-Thiem confined system. Water Resour Res 30:953–964CrossRefGoogle Scholar
  25. Hu RL, Yue ZQ, Wang LC, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76:65–77CrossRefGoogle Scholar
  26. Hu B, Jiang Y, Zhou J, Wang J, Xu SY (2008) Assessment and zonation of land subsidence disaster risk of Tianjin Binhai area (in Chinese). Sci Geogr Sin 28(5):693–697Google Scholar
  27. Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Trans Am Geophys Union 21(2):574–586CrossRefGoogle Scholar
  28. Jacob CE (1950) Flow of ground water. In: Rouse H (ed) Engineering hydraulics: proceedings of the fourth Hydraulics Conference. Iowa Institute of Hydraulic Research, Iowa City, IA, pp 12–15Google Scholar
  29. Jiang H (2005) Problems and discussions in the study of land subsidence in the Suzhou-Wuxi-Changzhou area (in Chinese). Quat Sci 25(1):29–33Google Scholar
  30. Jin H (2014) Water circulation: causes and treatment of atmospheric haze (in Chinese). Sci Soc 4(2):42–48Google Scholar
  31. Li CJ, Tang XM, Ma TH (2006) Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China. Hydrogeol J 14:1652–1665CrossRefGoogle Scholar
  32. Li QF, Wang HM (2006) A study on land subsidence in Shanghai (in Chinese). Geol J China Univ 12(2):169–178Google Scholar
  33. Li XQ, Zhou AG, Liu YD, Ma T, Liu CF, Liu L, Yang J (2012) Stable isotope geochemistry of dissolved chloride in relation to hydrogeology of the strongly exploited Quaternary aquifers, North China Plain. Appl Geochem 27(10): 2031–2041.Google Scholar
  34. Liu CM, Yu JJ, Eloise K (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26(2):265–272CrossRefGoogle Scholar
  35. Liu Y, Helm DC (2008a) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. methods. Water Resour Res 44:W07423Google Scholar
  36. Liu Y, Helm DC (2008b) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 2. field application. Water Resour Res 44:W07424Google Scholar
  37. Liu YJ, Ma T, Du Y (2017) Compaction of muddy sediment and its significance to groundwater chemistry. Procedia Earth Planet Sci 17:392–395CrossRefGoogle Scholar
  38. Ma T, Wang YX, Yan SL, Ma R, Yan CM, Zhou XP (2005) Causes of land subsidence in Taiyuan city, Shanxi, China. Proc 7th Int Symp Land Subsidence 1:102–110Google Scholar
  39. Ortega-Guerrero A, Rudolph DL, Cherry JA (1999) Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35(11):3327–3341CrossRefGoogle Scholar
  40. Phien-wej N, Giao PH, Nutalaya P (2006) Land subsidence in Bangkok, Thailand. Eng Geol 82(4):187–201CrossRefGoogle Scholar
  41. Poland JF (1984) Guidebook to studies of land subsidence due to ground-water withdrawal. UNESCO Studies and Reports in Hydrology 40, UNESCO, ParisGoogle Scholar
  42. Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51(7):5217–5238CrossRefGoogle Scholar
  43. Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392CrossRefGoogle Scholar
  44. Shen SL, Ma L, Xu YS, Yin ZY (2013) Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Can Geotech J 50(11):1129–1142CrossRefGoogle Scholar
  45. Shi XQ, Xue YQ, Ye SJ, Wu JC, Zhang Y, Yu J (2007) Characterization of land subsidence induced by groundwater withdrawals in Su-xi-Chang area, China. Environ Geol 52:27–40CrossRefGoogle Scholar
  46. Shi XQ, Xue YQ, Wu JC, Ye SJ, Zhang Y, Wei ZX, Yu J (2008) Characterization of regional land subsidence in Yangtze Delta, China: the example of Su-xi-Chang area and the city of Shanghai. Hydrogeol J 16:593–607CrossRefGoogle Scholar
  47. Shi X, Fang R, Wu J, Xu H, Sun Y, Yu J (2012) Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China. Engineering Geology 124:77–89Google Scholar
  48. Sun XH, Peng JB, Cui XM, Jiang ZW (2016) Relationship between ground fissures, groundwater exploitation and land subsidence in Taiyuan basin (in Chinese). Chin J Geol Hazard Control 27(2):91–98Google Scholar
  49. Sun ZY, Ma T, Ma J, Ma R, Yan CM (2007) Effect of strata heterogeneity on spatial pattern of land subsidence in Taiyuan City (in Chinese). Rock Soil Mech 28(2):399–403Google Scholar
  50. Teatini P, Ferronato M, Gambolati G, Bertoni W, Gonella M (2005) A century of land subsidence in Ravenna, Italy. Environ Geol 47:831–846CrossRefGoogle Scholar
  51. Terzaghi K (1925) Settlement and consolidation of clay. McGraw-Hill, New York, pp 874–878Google Scholar
  52. Tian F, Luo Y, Zhou Y, Li Y, Kou WJ, Jiang Y, Wang R (2017) Contrastive analysis of spatial-temporal evolution between land subsidence and groundwater exploitation in Beijing (in Chinese). South-to-North Water Trans Water Sci Technol 15(2):163–169Google Scholar
  53. Wang CM, Wang L (2005) The study on controlling the land subsidence of Cangzhou City. Proc 7th Int Symp Land Subsidence 2:887–896Google Scholar
  54. Wang J, Gao W, Xu SY, Yu LZ (2012) Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim Chang 115:537–558CrossRefGoogle Scholar
  55. Wang HM 2013 The risk assessment system and risk management of land subsidence in Shanghai (in Chinese). PhD Thesis, Shanghai University, Shanghai, ChinaGoogle Scholar
  56. Wang YW 2016 Numerical simulation of regional land subsidence in coastal area of North Jiangsu (in Chinese). MSc Thesis, Nanjing University, Nanjing, ChinaGoogle Scholar
  57. Whittaker BN, Reddish DI (1989) Subsidence: occurrence, prediction and control. Elsevier, AmsterdamGoogle Scholar
  58. Xu JS (2012) Study on the formation mechanism of ground fissures in North China Epicontinental Basin. PhD Thesis, Chang’an University, Xi’an, ChinaGoogle Scholar
  59. Xu YS, Shen SL, Cai ZY, Zhou GY (2008) The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat Hazards 45:123–135CrossRefGoogle Scholar
  60. Xu YS, Ma L, Du YJ SSL (2012) Analysis of urbanisation-induced land subsidence in Shanghai. Nat Hazards 63:1255–1267CrossRefGoogle Scholar
  61. Xu YS, Shen SL, Ren DJ, Wu HN (2016) Analysis of factors of land subsidence in Shanghai: a view based on strategic environmental assessment. Sustainability 8(6):573CrossRefGoogle Scholar
  62. Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ Geol 48:713–720CrossRefGoogle Scholar
  63. Xue YQ, Zhang Y (2016) Land subsidence and land fissures in the southern Yangtze River Delta (in Chinese). East China Geol 37(1):1–9Google Scholar
  64. Yamamoto S (1995) Recent trend of land subsidence in Japan. IAHS Publ. 234, IAHS, Wallingford, UK, pp 487–492Google Scholar
  65. Yang HR 2015 Simulation of land subsidence in Taiyuan basin (in Chinese). MSc Thesis, Chang’an University, Xi’an, ChinaGoogle Scholar
  66. Ye SJ, Luo Y, Wu JC, Yan XX, Wang HM, Jiao X, Teatini P (2016a) Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrogeol J 24:695–709CrossRefGoogle Scholar
  67. Ye SJ, Xue YQ, Wu JC, Yan XX, Yu J (2016b) Progression and mitigation of land subsidence in China. Hydrogeol J 24:685–693CrossRefGoogle Scholar
  68. Yi LX, Zhang F, Xu H, Chen SJ, Wang W, Yu Q (2011) Land subsidence in Tianjin, China. Environ Earth Sci 62:1151–1161CrossRefGoogle Scholar
  69. Yin YP, Zhang ZC, Zhang KJ (2005) Land subsidence and countermeasures for its prevention in China (in Chinese). Chin J Geol Hazard Control 16(2):1–8Google Scholar
  70. Yu J, Wu JQ, Wang XM, Yu Q (2004) Research on the correlative prediction model with a regional decomposition base of the land subsidence in the Suzhou-Wuxi-Changzhou area (in Chinese). Hydrogeol Eng Geol 4:92–95Google Scholar
  71. Yu J, Wang XM, Wu JQ, Xie JB (2006) Characteristics of land subsidence and its remedial proposal in Suzhou-Wuxi-Changzhou area (in Chinese). Geol J China Univ 12(2):179–184Google Scholar
  72. Zeng YJ, Xie ZH, Zou J (2017) Hydrologic and climatic responses to global anthropogenic groundwater extraction. J Clim 30:71–90CrossRefGoogle Scholar
  73. Zhang AG, Wei ZX (2005) Land subsidence in China (in Chinese). Shanghai Scientific & Technical Publishers, ShanghaiGoogle Scholar
  74. Zhang Y, Xue YQ, Wu JC, Yu J, Wei ZX, Li QF (2008) Land subsidence and earth fissures due to groundwater withdrawal in the southern Yangtse Delta, China. Environ Geol 55:751–762CrossRefGoogle Scholar
  75. Zhang Y, Xue YQ, Wu JC, Shi XQ, Wu J (2010) Excessive groundwater withdrawal and resultant land subsidence in the Su-xi-Chang area, China. Environ Earth Sci 61:1135–1143CrossRefGoogle Scholar
  76. Zhang YQ, Gong HL, Gu ZQ, Wang R, Li XJ, Zhao WJ (2014) Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China. Hydrogeol J 22:397–409CrossRefGoogle Scholar
  77. Zhang YH, Wu HA, Kang YH (2016) Ground subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by Interferometric SAR (in Chinese). Acta Geodaet Cartograph Sin 45(9):1050–1058Google Scholar
  78. Zhang ZH, Shi DH, Shen ZL, Zhong ZS, Xue YQ (1997) Evolution and development of groundwater environment in North China Plain under human activities (in Chinese). Acta Geosci Sin 18(4):337–344Google Scholar
  79. Zheng CM, Liu J, Cao GL, Kendy E, Wang H, Jia YW (2010) Can China cope with its water crisis? Perspectives from the North China Plain. Ground Water 48(3):350–354CrossRefGoogle Scholar
  80. Zhu JY, Guo HP, Li WP, Tian XW (2014) Relationship between land subsidence and deep groundwater yield in the North China Plain (in Chinese). South-to-North Water Trans Water Sci Technol 12(3):165–169Google Scholar
  81. Zhu L, Gong HL, Li XJ, Wang R, Chen BB, Dai ZX, Teatini P (2015) Land subsidence due to groundwater withdrawal in the northern Beijing Plain, China. Eng Geol 193:243–255CrossRefGoogle Scholar
  82. Zuo WZ (2006) Survey and research on seawater intrusion in the Yandaihe Plain of Qinhuangdao City (in Chinese). PhD Thesis, China University of Geosciences, BeijingGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations