Advertisement

Hydrogeology Journal

, Volume 24, Issue 2, pp 395–406 | Cite as

The history and fate of the Nubian Sandstone Aquifer springs in the oasis depressions of the Western Desert, Egypt

  • Owen PowellEmail author
  • Rod Fensham
Report

Abstract

Extraction of groundwater for agriculture has resulted in the loss of springs across arid regions of the globe. The history and fate are recorded of the artesian springs of Egypt’s Western Desert, from ancient times to the present, spanning the rise and fall of the great civilisations from the Pharoanic dynasties to Persian, Greek and Roman conquests. The study area includes oases Kharga, Dakhla, Bahriya, Farafra and Siwa, and several outer and small oases around Siwa and the edge of the Qattara Depression. The region is hyper-arid, receiving 10 mm or less average annual precipitation and evaporation rates are in the vicinity of 3,000 mm/a. Groundwater in the oases is largely derived from bores discharging from the Nubian Sandstone Aquifer. Based on an extensive survey, conducted for the first time, attention is drawn to the rapid demise of springs as a result of modern irrigation schemes which continue to deplete groundwater supplies.

Keywords

Egypt Groundwater development Arid regions History of hydrogeology Oasis 

L’histoire et le sort des sources de l’Aquifère gréseux Nubien dans les dépressions des oasis du désert occidental, Egypte

Résumé

L’exploitation des eaux souterraines pour l’agriculture a entraîné la perte des sources dans les régions arides du globe. L’histoire et le sort de sources artésiennes du désert occidental égyptien sont enregistrées de l’Antiquité à nos jours, passant au travers de l’essor et du déclin des grandes civilisations des dynasties pharaonique à perse aux conquêtes grecques et romaines. La zone d’étude comprend les oasis de Kharga, Dakhla, Bahriya, Farafra et de Siwa, et plusieurs petits oasis situés autour de Siwa et sur le bord de la dépression de Qattara. La région est hyper-aride, recevant 10 mm ou moins en moyenne de précipitation annuelle et avec des taux d’évaporation proches des 3000 mm/a. Les eaux souterraines dans les oasis proviennent en grande partie des puits de décharge de l’aquifère des grès nubiens. A partir d’une vaste enquête, menée pour la première fois, l’attention est attirée sur la disparition rapide des sources résultant des systèmes d’irrigation modernes qui continuent à épuiser les stocks d’eau souterraine.

La historia y el destino de los manantiales de del acuífero de la arenisca Nubia en las depresiones de los oasis del desierto occidental, Egipto

Resumen

La extracción de agua subterránea para la agricultura ha resultado en la pérdida de manantiales en todas las regiones áridas del mundo. La historia y el destino de los manantiales artesianos del desierto occidental de Egipto están registrados, desde la antigüedad hasta el presente, abarcando el auge y la caída de las grandes civilizaciones desde las dinastías faraónicas a las conquistas persas, griegas y romanas. El área de estudio incluye los oasis Kharga, Dakhla, Bahriya, Farafra y Siwa, y varios oasis externos y pequeños en el alrededor de Siwa y el borde de la depresión de Qattara. La región es hiperárida, recibiendo 10 mm o menos de tasas medias anuales de precipitación y los ritmos de evaporación están próximos a 3000 mm/a. El agua subterránea en los oasis proviene mayormente de los pozos de descarga del Acuífero de las Areniscas de Nubia. Sobre la base de un amplio estudio, llevado a cabo por primera vez, se fija la atención a la rápida desaparición de manantiales, como resultado de los sistemas modernos de riego que continúan con el agotamiento de los los suministros de agua subterránea.

埃及西部沙漠绿洲洼地努比亚砂岩含水层泉的历史和命运

摘要

抽取地下水用于农业导致全球干旱地区泉的消失。从古代到现在,跨越了从古埃及法老王朝代到波斯、希腊和罗马统治时期内大文明的起起落落, 都记载了埃及西部沙漠自流泉的历史和命运。研究区包括Kharga、 Dakhla、 Bahriya、 Farafra 、 Siwa绿洲和Siwa绿洲外围的小的绿洲,以及Qattara洼地的边缘地带。本地区超干旱 ,每年的降雨量10 毫米或不到平均数,而每年的蒸发量大约为3000毫米。绿洲的地下水主要从努比亚砂岩含水层的钻孔排泄。在第一次所进行的广泛调查的基础上,现在农业灌溉项目导致泉的快速干涸引起了人们的注意,农业灌溉项目仍在继续消耗着地下水。

A história e destino das nascentes do Aquífero do Arenito Núbio nas depressões do oásis do Deserto Ocidental, Egito

Resumo

Extrações de águas subterrâneas para agricultura tem resultado em uma perda de nascentes ao longo de regiões áridas do globo. A história e destino das nascentes artesianas do Deserto Ocidental Egípcio são registrados, dos tempos antigos até o presente, atravessando a ascensão e queda das grandes civilizações, desde as dinastias Faraônicas aos conquistadores Persas, Gregos e Romanos. A área de estudo inclui os oásis Kharga, Dakhla, Bahriya, Farafra e Siwa, e diversos oásis secundários e pequenos ao redor de Siwa e no limite da Depressão Qattara. A região é hiperárida, recebendo 10 mm ou menos de precipitação na média e as taxas de evapotranspiração na proximidade de 3000 mm/a. A água subterrânea nos oásis é amplamente derivada de furos de descarga do Aquífero do Arenito Núbio. Baseado em um levantamento extensivo, conduzido pela primeira vez, se dá atenção ao o rápido desaparecimento de nascentes, como resultado de sistemas de irrigação modernos que continuam a esgotar o suprimento de águas subterrâneas.

Notes

Acknowledgements

The authors would like to acknowledge the Council of Australian Arab Relations for their financial support of this project. The authors wish to thank Professor Magdy Torab and Egyptian Environmental Changes Society for their help establishing the project as well as Jennifer Silcock and Anna Flittner for assisting with field work. The authors would also like to acknowledge the Egyptian Geography Society for enabling access to historical plans. Finally, the authors would like to acknowledge the people of the oases who were generous in sharing their knowledge, insights and hospitality.

Supplementary material

10040_2015_1335_MOESM1_ESM.pdf (575 kb)
ESM 1 (PDF 574 kb)

References

  1. Abouelmagd A, Sultan M, Milewski A, Kehew AE, Sturchio NC, Soliman F, Krishnamurthy RV, Cutrim E (2012) Toward a better understanding of palaeoclimatic regimes that recharged the fossil aquifers in North Africa: inferences from stable isotope and remote sensing data. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:137–149CrossRefGoogle Scholar
  2. Aldumairy A (2005) Siwa: past and present. Yasso, AlexandriaGoogle Scholar
  3. Ashley G, Goman M, Hover V, Owen RB, Renaut R, Muasya AM (2002) Artesian blister wetlands, a perennial water resource in the semi-arid rift valley of East Africa. Wetlands 22:686–695CrossRefGoogle Scholar
  4. Beadnell HJ (1909) An Egyptian oasis. Murray, LondonGoogle Scholar
  5. Beaumont P (1971) Qanat systems in Iran. Hydrol Sci J 16:39–50Google Scholar
  6. Belgrave C (1923) Siwa: the oasis of Jupiter Ammon. John Lane the Bodley Head, LondonGoogle Scholar
  7. Briois F, Midant-Reynes B, Marchand S, Tristant Y, Wuttmann M, De Dapper M, Lesur J, Newton C (2012) Neolithic occupation of an artesian spring: KS043 in the Kharga Oasis, Egypt. J Field Archaeol 37:178–191CrossRefGoogle Scholar
  8. Bubenzer O, Riemer H (2007) Holocene climatic change and human settlement between the central Sahara and the Nile Valley: archaeological and geomorphological results. Geoarchaeology 22:607–620CrossRefGoogle Scholar
  9. Closas A (2014) Norias, boreholes and the role of the state during the groundwater ‘silent revolution’in La Mancha, Spain. Hydrogeol J 1–14Google Scholar
  10. Cosson AD (1937) Notes on the Baḥrēn, Nuwēmisah, and El-A’reg oases in the Libyan Desert. J Egypt Archaeol 23:226–229CrossRefGoogle Scholar
  11. Cressey GB (1958) Qanats, karez, and foggaras. Geogr Rev 48(1):27–44Google Scholar
  12. Dabous A, Osmond J (2001) Uranium isotopic study of artesian and pluvial contributions to the Nubian Aquifer, Western Desert, Egypt. J Hydrol 243:242–253CrossRefGoogle Scholar
  13. Ebraheem A, Riad S, Wycisk P, Seif El-Nasr A (2002) Simulation of impact of present and future groundwater extraction from the non-replenished Nubian Sandstone Aquifer in southwest Egypt. Environ Geol 43:188–196CrossRefGoogle Scholar
  14. Fairfax R, Fensham R (2002) In the footsteps of J. Alfred Griffiths: a cataclysmic history of great artesian basin springs in Queensland. Aust Geogr Stud 40:210–230CrossRefGoogle Scholar
  15. Fakhry A (1974) Bahriya and Farafra. American University in Cairo, Cairo Press, CairoGoogle Scholar
  16. Fakhry A (1974) Bahriya and Farafra. American University in Cairo, Cairo Press, CairoGoogle Scholar
  17. Fensham RJ, Fairfax RJ (2003) Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetl Ecol Manag 11:343–362CrossRefGoogle Scholar
  18. Fensham RJ, Silcock JL, Kerezsy A, Ponder W (2011) Four desert waters: setting arid zone wetland conservation priorities through understanding patterns of endemism. Biol Conserv 144:2459–2467CrossRefGoogle Scholar
  19. Freeman P (2011) Alexander the Great. Simon and Schuster, New YorkGoogle Scholar
  20. Harris CR (1981) Oases in the desert: the mound springs of northern South Australia. R. Geogr. Soc. Aust., Adelaide, Australia, pp 26–39Google Scholar
  21. Harvey FE, Ayers JF, Gosselin DC (2007) Ground water dependence of endangered ecosystems: Nebraska’s eastern saline wetlands. Groundwater 45:736–752CrossRefGoogle Scholar
  22. Hercus L, Clarke P (1986) Nine Simpson desert wells. Archaeol Ocean 21:51–62Google Scholar
  23. Himida IH (1970) The Nubian Artesian Basin: its regional hydrological aspects and paleohydrological reconstruction. J Hydrol N Z 9:89–116Google Scholar
  24. Idris H (1996) Springs in Egypt. Environ Geol 27:99–104CrossRefGoogle Scholar
  25. Ikram S, Rossi C (2004) An early dynastic serekh from the Kharga Oasis. J Egypt Archaeol 90:211–215Google Scholar
  26. King WJH (1917) Irrigation in the Dakhla Oasis. Geogr J 50:358–364CrossRefGoogle Scholar
  27. Kröpelin S, Verschuren D, Lézine A-M, Eggermont H, Cocquyt C, Francus P, Cazet J-P, Fagot M, Rumes B, Russell JM, Darius F, Conley DJ, Schuster M, Von Suchodoletz H, Engstrom DR (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765–768CrossRefGoogle Scholar
  28. Kuper R, Kröpelin S (2006) Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313:803–807CrossRefGoogle Scholar
  29. Lamoreaux P, Memon B, Idris H (1985) Groundwater development, Kharga Oases, Western Desert of Egypt: a long-term environmental concern. Environ Geol Water Sci 7:129–149CrossRefGoogle Scholar
  30. Lightfoot DR (1996) Syrian qanat Romani: history, ecology, abandonment. J Arid Environ 33:321–336CrossRefGoogle Scholar
  31. Lightfoot DR (2000) The origin and diffusion of qanats in Arabia: new evidence from the northern and southern peninsula. Geogr J 166:215–226CrossRefGoogle Scholar
  32. Mandel RD, Simmons AH (2001) Prehistoric occupation of late Quaternary landscapes near Kharga Oasis, Western Desert of Egypt. Geoarchaeology 16:95–117CrossRefGoogle Scholar
  33. Manfred H, Brinkman PJ (1989) A groundwater model of the Nubian aquifer system. Hydrogeol Sci 34:425–447Google Scholar
  34. Masoud A, Koike K (2006) Arid land salinization detected by remotely-sensed landcover changes: a case study in the Siwa region, NW Egypt. J Arid Environ 66:151–167CrossRefGoogle Scholar
  35. Mather DCM (1944) A journey through the Qattara depression. Geogr J 103:152–160CrossRefGoogle Scholar
  36. Meredith D (1952) The Roman remains in the Eastern Desert of Egypt. J Egypt Archaeol 38:94–111Google Scholar
  37. Misak RF, Abdel Baki AA, El-Hakim SS (1997) On the causes and control of the waterlogging phenomenon, Siwa Oasis, northern Western Desert, Egypt. J Arid Environ 37:23–32CrossRefGoogle Scholar
  38. Murphey R (1951) The decline of North Africa since the Roman occupation: climatic or human? Ann Assoc Am Geogr 41:116–132CrossRefGoogle Scholar
  39. Nicoll K (2001) Radiocarbon chronologies for prehistoric human occupation and hydroclimatic change in Egypt and northern Sudan. Geoarchaeology 16:47–64CrossRefGoogle Scholar
  40. Nour S (1996) Groundwater potential for irrigation in the East Oweinat area, Western Desert Egypt. Environ Geol 27:143–154Google Scholar
  41. Powell O, Silcock J, Fensham R (2015) Oases to oblivion: the rapid demise of springs in the south-eastern Great Artesian Basin, Australia. Groundwater 53:171–178CrossRefGoogle Scholar
  42. Roberts CR, Mitchell CW (1987) Spring mounds in southern Tunisia. Geol Soc Lond Spec Publ 35:321–334CrossRefGoogle Scholar
  43. Schacht I (2003) A preliminary survey of the ancient qanat systems of the northern Kharga Oasis. Mitt Dtsch Archäol Inst Abt Kairo 59:411–423Google Scholar
  44. Shahin M (2007) Water resources and hydrometeorology of the Arab region. Springer, Heidelberg, GermanyGoogle Scholar
  45. Shata AA (1982) Hydrogeology of the Great Nubian Sandstone basin, Egypt. Q J Eng Geol Hydrogeol 15:127–133CrossRefGoogle Scholar
  46. Shepard WD (1993) Desert springs-both rare and endangered. Aquat Conserv Mar Freshwat Ecosyst 3:351–359CrossRefGoogle Scholar
  47. Smith JR, Giegengack R, Schwarcz HP (2004a) Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 206:157–175CrossRefGoogle Scholar
  48. Smith JR, Giegengack R, Schwarcz HP, Mcdonald MMA, Kleindienst MR, Hawkins AL, Churcher CS (2004b) A reconstruction of Quaternary pluvial environments and human occupations using stratigraphy and geochronology of fossil-spring tufas, Kharga Oasis, Egypt. Geoarchaeology 19:407–439CrossRefGoogle Scholar
  49. Stevens LE, Meretsky VJ (2008) Aridland springs in North America: ecology and conservation. University of Arizona Press, Tucson, AZGoogle Scholar
  50. Voll SP (1980) Egyptian land reclamation since the revolution. Middle East J 34:127–148Google Scholar
  51. Voss C, Soliman S (2014) The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling. Hydrogeol J 22:441–468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of HumanitiesUniversity of TasmaniaTasmaniaAustralia
  2. 2.School of Biological SciencesUniversity of QueenslandQueenslandAustralia

Personalised recommendations