Hydrogeology Journal

, Volume 19, Issue 8, pp 1459–1486 | Cite as

Review: Regional land subsidence accompanying groundwater extraction

Paper

Abstract

The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

Keywords

Review Subsidence Aquifer-system compaction Numerical modeling InSAR 

Revue: Subsidence régionale associée à l’exploitation des eaux souterraines

Résumé

L’exploitation des eaux souterraines peut générer une subsidence du sous-sol associée à la compaction de systèmes aquifères prédisposés, tels que des systèmes aquifères alluviaux de sédiments meubles ou des systèmes aquifères de bassins sédimentaires comprenant des niveaux aquitards et aquifères. Différentes méthodes au sol ou de télédétection sont utilisées afin de mesurer et de cartographier la subsidence. De nombreuses zones de subsidence associées à une exploitation des eaux souterraines ont été identifiées et surveillées, et des mesures correctives pour réduire ou stopper la subsidence ont été conçues. Deux principales actions sont utilisées pour atténuer la subsidence liée à l’exploitation des eaux souterraines : réduction des prélèvements et recharge artificielle. Des analyses et simulations de la compaction de systèmes aquifères intégrant les relations de base entre potentiels hydrauliques, tensions, compressibilité et écoulement souterrain sont réalisées selon deux approches – une basée sur la théorie classique des écoulements souterrains et l’autre basée sur la théorie de l’élasticité linéaire de la porosité. Des recherches et développements sont néanmoins nécessaires pour améliorer l’évaluation et l’analyse de la compaction des systèmes aquifères, la mise en place de la subsidence et les ruptures potentiels du sous-sol, et pour apporter des mesures pour la gestion de la ressource et pour l’atténuation des risques de subsidence, dans les domaines suivants : comportement hydromécanique des aquitards, rôle de la déformation horizontale, application de l’interférométrie radar d’ouverture synthétique différentielle et simulation couplée à l’échelle régionale des écoulements souterrains et des déformations au sein des systèmes aquifères.

Revisión: Subsidencia regional del terreno que acompaña a la extracción de agua subterránea

Resumen

La extracción de agua subterránea puede generar subsidencia del terreno causando la compactación de sistemas acuíferos susceptibles, típicamente sistemas acuíferos aluviales no consolidado o de relleno de cuenca que comprenden acuíferos y acuitardos. Se utilizan varios métodos de sensoramientos sobre el terreno y remotos para medir y mapear la subsidencia, Muchas áreas de subsidencia causadas por el bombeo del agua subterránea han sido identificadas y monitoreadas, y se han desarrollado medidas correctivas para retrasar o detener la subsidencia. Se usan dos medios principales para mitigar la subsidencia causada por la extracción de agua subterránea – la reducción de la extracción del agua subterránea y la recarga artificial. El análisis y la simulación de la compactación del sistema acuífero se sigue a partir de las relaciones básicas entre carga, tensión, compresibilidad y flujo subterráneo y son evaluados usando primariamente según dos aproximaciones – una basada en la teoría convencional de flujo de agua subterránea y otro basado en la teoría lineal de la poroelasticidad. La investigación y el desarrollo para mejorar la evaluación y el análisis de la compactación de sistemas acuíferos, la subsidencia que acompaña y la ruptura potencial del terreno necesarias en las áreas temáticas del comportamiento hidromecánico del acuitardo, el rol de la deformación horizontal, la aplicación de interferometría diferencial del radar de apertura sintética, y la simulación a escala regional del acoplamiento del flujo de agua subterránea y la deformación del sistema acuífero para sostener el manejo de los recursos y las medidas de mitigación de riesgos.

综述:地下水开采引起的区域地面沉降

摘要

地下水开采引起敏感性含水层系统压实,进而产生地面沉降。典型的敏感性含水层系统有松散冲积和盆地充填含水层系统,由含水层和弱透水层组成。有多种基于地面资料和遥感数据的方法可以测量并刻画地面沉降。诸多因地下水开采而引起的地面沉降区,已得到识别和相应监测,并有减缓或者阻止地面沉降的校正措施提出。对于地下水开采引起的地面沉降, 两种用来减缓的主要措施为:减少地下水开采量与人工回灌。含水层系统压实的分析与模拟从属于水头、压力、可压缩性和地下水流的基本关系,且主要采用两种方法实现:一是基于普通的地下水流理论;二是基于线性弹性力学理论。改进含水层系统压实评价与分析以及相应的沉降和潜在地面断裂的研发需要关注以下领域:包括弱透水层的流体力学特征,水平变形的作用,多种差分合成孔径雷达干涉测量的应用,区域尺度上地下水流和含水层系统的变形模拟等,以支持资源管理和减灾措施。

Revisão: Subsidência regional associada à extracção de água subterrânea

Resumo

A extracção de água subterrânea pode ocasionar a subsidência dos terrenos em resultado da compacção em sistemas aquíferos susceptíveis, tipicamente sistemas aquíferos aluviais ou de enchimento de bacias, compreendendo aquíferos e aquitardos. Para medir e mapear a subsidência são usados vários métodos baseados em leituras no terreno ou em detecção remota. Numerosas áreas com subsidência causada por bombagem de água subterrânea têm sido identificadas e monitorizadas, assim como têm sido desenvolvidas medidas correctivas para atrasar ou parar a subsidência. Utilizam-se dois processos principais para mitigar a subsidência causada por extracção de água subterrânea: a redução da taxa de bombagem e a recarga artificial. A análise e a simulação da compacção de sistemas aquíferos decorrem das relações básicas entre carga hidráulica, estados de tensão, compressibilidade e fluxos de água subterrânea e são tratados através de duas abordagens, uma baseada na teoria convencional do fluxo de água subterrânea e outra baseada na teoria da poroelasticidade linear. Para suportar medidas de gestão do recurso e medidas de mitigação de risco serão necessários a investigação e o desenvolvimento, a análise da compacção de sistemas aquíferos e das resultantes subsidência e potencial rotura de terrenos, em tópicos como o comportamento hidromecânico de aquitardos, o papel da deformação horizontal, a aplicação de interferometria de radar de abertura sintética diferencial e a simulação à escala regional do acoplamento do fluxo subterrâneo com a deformação de sistemas aquíferos.

References

  1. Abidin HZ, Andreas H, Gumilar I, Gamal M, Fukuda Y, Deguchi T (2009) Land subsidence and urban development in Jakarta (Indonesia). 7th FIG Regional Conference Spatial Data Serving People: Land Governance and the Environment: Building the Capacity, Hanoi, Vietnam, 19–22 October 2009. http://www.fig.net/vietnam/. Cited 31 May 2011
  2. ADWR (2011) Maps of land subsidence areas in Arizona: Scottsdale subsidence feature. ADWR, Phoenix, AZ. http://www.adwr.state.az.us/azdwr/Hydrology/Geophysics/documents/ScottsdaleArea2004to2010_8x11.pdf. Cited 31 May 2011
  3. Alberto-Jaime P, Méndez-Sánchez E (2010) Evolution of Mexico City clay properties affected by land subsidence. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UK, pp 232–234Google Scholar
  4. Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RL (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486CrossRefGoogle Scholar
  5. American Society of Photogrammetry and Remote Sensing (2004) ASPRS guidelines: vertical accuracy reporting for LiDAR data,ver 1.0. American Society of Photogrammetry and Remote Sensing Lidar Committee. http://www.asprs.org/a/society/committees/standards/Vertical_Accuracy_Reporting_for_Lidar_Data.pdf. Cited 13 July 2011
  6. Anderson SR (1989) Potential for aquifer compaction, land subsidence, and earth fissures in Avra Valley, Pima and Pinal Counties, Arizona. USGS Hydrologic Investigations Atlas 718, 3 sheets, scale 1:250000. http://pubs.er.usgs.gov/usgspubs/ha/ha718. Cited 22 Jan 2011
  7. Anderssohn J, Wetzel HU, Walter T, Motagh M (2008) Measurement of land subsidence in the Kashmar Valley, northeast Iran, using satellite radar interferometry. ESA SP 649, European Space Agency, ParisGoogle Scholar
  8. Auvinet G (2009) Land subsidence in Mexico City. In: Auvinet GY, Juárez M (eds) Geotechnical engineering in urban areas affected by land subsidence. Volume prepared by ISSMGE Technical Committee 36 for XVII ISSMGE Conference, Alexandria, Egypt, 2009. Mexican Society of Soil Mechanics, Mexico City, pp 3–11Google Scholar
  9. Barends FBJ, Brouwer FJJ, Schröder FH (eds) (1995) Land subsidence. Proceedings of the Fifth International Symposium on Land Subsidence, The Hague, Netherlands, Oct 1995. IAHS Publ. 234, IASH, Wallingford, UK. http://iahs.info/redbooks/234.htm. Cited 13 July 2011
  10. Barrientos B, Cerca M, García-Márquez J, Hernández-Bernal C (2008) Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography. J Opt A: Pure Appl Opt 10. doi:10.1088/1464-4258/10/10/104027
  11. Bawden GW (2002) Optimizing GPS arrays to image both tectonic and anthropogenic deformation. EOS Trans 83:52, abstract G22A-11Google Scholar
  12. Bawden GW, Thatcher W, Stein RS, Hudnut KW, Peltzer G (2001) Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412:812–815CrossRefGoogle Scholar
  13. Beaver J, Tatlow M, Cohen D, Marra M (2005) Monitoring subsidence trends in Phoenix with SAR interferometry. EOS Trans 86:52, abstract G51C-0852CrossRefGoogle Scholar
  14. Bell JW, Amelung F, Ramelli A, Blewitt G (2002) Land subsidence in Las Vegas, Nevada, 1935–2000: new geodetic data show evolution, revised spatial patterns, and reduced rates. Env Eng Geosci 8(3):155–174CrossRefGoogle Scholar
  15. Bell JW, Amelung F, Ferretti A et al (2008) Permanent scatterer InSAR reveals seasonal and long-term aquifer system response to groundwater pumping and artificial recharge. Water Resour Res 44:W02407. doi:10.1029/2007WR006152 CrossRefGoogle Scholar
  16. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. ITGRS 40(11):2375–2383Google Scholar
  17. Biot MA (1941) General theory of three-dimensional consolidation. J App Phys 12:155–164CrossRefGoogle Scholar
  18. Bonsignore F, Bitelli G, Chahoud A, Macini P, Mesini E, Severi P, Villani B, Vittuari L (2010) Recent extensometric data for the monitoring of subsidence in Bologna (Italy). In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UK, pp 333–338Google Scholar
  19. Borchers JW (ed) (1998) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, 4–5 Oct 1995, Sacramento, California. Spec. Publ. 8, Assoc. Eng. Geol., Denver CO, Star, Belmont, CAGoogle Scholar
  20. Bredehoeft JD, Papadopulos SS (1980) A method for determining the hydraulic properties of tight formations. Water Resour Res 16(1):233–238CrossRefGoogle Scholar
  21. Buckley SM, Rosen PA, Hensley S, Tapley BD (2003) Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J Geophys Res 108(B11):2542. doi:10.1029/2002JB001848, Cited 31 May 2011CrossRefGoogle Scholar
  22. Budhu M (2011) Earth fissure formation from the mechanics of groundwater pumping. Int J Geomech 11(1). doi:10.1061/(ASCE)GM.1943-5622.0000060
  23. Burbey TJ (2001a) Stress-strain analyses for aquifer-system characterization. Ground Water 39(1):128–136CrossRefGoogle Scholar
  24. Burbey TJ (2001b) Storage coefficient revisited: Is purely vertical strain a good approximation? Ground Water 39(3):458–464CrossRefGoogle Scholar
  25. Burbey TJ (2002) The influence of faults in basin-fill deposits on land subsidence, Las Vegas, Nevada, USA. Hydrogeol J 10(5):525–538CrossRefGoogle Scholar
  26. Burbey TJ (2005) Use of vertical and horizontal deformation data with inverse models to quantify parameters during aquifer testing. In: Zhang A, Gong S, Carbognin L, Johnson AI (eds) Land subsidence. Proceedings of the 7th International Symposium on Land Subsidence, Oct 2005, vol 2. Shanghai Scientific, Shanghai, PRC, pp 560–569Google Scholar
  27. Burbey TJ (2006) Three-dimensional deformation and strain induced by municipal pumping, part 2: numerical analysis. J Hydrol 330(3–4):422–434CrossRefGoogle Scholar
  28. Burbey TJ, Helm DC (1999) Modeling three-dimensional deformation in response to pumping of unconsolidated aquifers. Env Eng Geosci 5:199–212Google Scholar
  29. Burbey TJ, Warner SM, Blewitt G, Bell JW, Hill E (2006) Three-dimensional deformation and strain induced by municipal pumping, part 1: analysis of field data. J Hydrol 319(1–4):123–142CrossRefGoogle Scholar
  30. Cabral-Cano E, Dixon TH, Miralles-Wilhelm F, Díaz-Molina O, Sánchez-Zamora O, Carande RE (2008) Space geodetic imaging of rapid ground subsidence in Mexico City. GSA Bull 120(11–12):1556–1566CrossRefGoogle Scholar
  31. Calderhead AI, Martel R, Alasset PJ, Rivera A, Garfias J (2010) Land subsidence induced by groundwater pumping, monitored by D-InSAR and field data in the Toluca Valley, Mexico. Can J Remote Sens 36(1):9–23CrossRefGoogle Scholar
  32. Calderhead AI, Therrien R, Rivera A, Martel R, Garfias J (2011) Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv Water Resour 34:83–97. doi:10.1016/j.advwatres.2010.09.017 CrossRefGoogle Scholar
  33. Canuti P, Casagli N, Farina P, Marks F, Ferretti A, Menduni G (2005) Land subsidence in the Arno River Basin studied through SAR interferometry. In: Zhang A, Gong S, Carbognin L, Johnson AI (eds) Land subsidence. Proceedings of the Seventh International Symposium on Land Subsidence, vol 1. Shanghai Scientific, Shanghai, pp 407–416Google Scholar
  34. Carbognin L, Gambolati G, Johnson AI (eds) (2000) Land subsidence. Proceedings of the Sixth International Symposium on Land Subsidence, Ravenna, Italy, 24–29 Sept 2000, vols 1–2. La Garagola, Padova, Italy, Google Scholar
  35. Carpenter MC (1993) Earth-fissure movements associated with fluctuations in ground-water levels near the Picacho Mountains, south-central Arizona, 1980–84. US Geol Surv Prof Pap 497-H. http://pubs.er.usgs.gov/usgspubs/pp/pp497H. Cited 13 July 2011
  36. Carreón-Freyre D (2010) Land subsidence processes and associated ground fracturing in central Mexico. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UK, pp 149–157Google Scholar
  37. Carreón-Freyre, D, Cerca, M, Galloway DL, Silva-Corona JJ (eds) (2010) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UKGoogle Scholar
  38. Carruth RL, Pool DR, Anderson CE (2007) Land subsidence and aquifer-system compaction in the Tucson Active Management Area, south-central Arizona, 1987–2005. US Geol Surv Sci Invest Rep 2007–5190. http://pubs.usgs.gov/sir/2007/5190/. Cited 13 July 2011
  39. Chatterjee RS, Fruneau B, Rudant JP, Roy PS, Frison PL, Lakhera RC, Dadhwal VK, Saha R (2006) Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sens Environ 102(1–2):176–185CrossRefGoogle Scholar
  40. Cooper HH Jr (1966) The equation of groundwater flow in fixed and deforming coordinates. J Geophys Res 71:4785–4790Google Scholar
  41. Danskin WR, Kasmarek MC, Strom EW (2003) Optimal withdrawal of elastically stored ground water in the Chicot Aquifer, Houston area, Texas. In: Prince KR, Galloway DL (eds) US Geological Survey Subsidence Interest Group Conference, Proceedings of the technical meeting, Galveston, Texas, 27–29 November 2000, US Geol Surv Open-File Rep 03–308, pp 39–48. http://pubs.usgs.gov/of/2003/ofr03-308/pdf/OFR03-308.pdf. Cited 13 July 2011
  42. Danskin WR, McPherson KR, Woolfenden LR (2006) Hydrology, description of computer models, and evaluation of selected water-management alternatives in the San Bernardino area, California. US Geol Surv Open-File Rep 2005–1278. http://pubs.usgs.gov/of/2005/1278/. Cited 13 July 2011
  43. de Marsily Gh, Delay F, Gonçalvès J et al (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183CrossRefGoogle Scholar
  44. De Paulis R, Prati C, Scirpoli S, Sletner PA, Tesei A (2010) Measuring seabed altimetric variations with a repeat-track SAS interferometry experiment: processing and results. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UK, pp 358–363Google Scholar
  45. Dehghani M, Hooper A, Hanssen RF, Zoej MJV, Saatchi S, Entezam I (2010) Hybrid conventional and persistent scatterer SAR interferometry for land subsidence monitoring in Tehran Basin, Iran. Proceedings FRINGE Workshop 2009, Frascati, Italy, 30 Nov–4 Dec 2009Google Scholar
  46. Densmore J, Ellett K, Howle J, Carpenter, M, Sneed M (2010) Measuring land-surface deformation on Bicycle Lake playa, Fort Irwin, California, USA. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UK, pp 39–43Google Scholar
  47. Don NC, Hang NTM, Araki H, Yamanishi H, Koga K (2006) Groundwater resources management under environmental constraints in Shiroishi of Saga plain, Japan. Environ Geol 49:601–609. doi:10.1007/s00254-005-0109-9 CrossRefGoogle Scholar
  48. Epstein VJ (1987) Hydrologic and geologic factors affecting land subsidence near Eloy, Arizona. US Geol Surv Water Resour Invest Rep 87–4143. http://pubs.er.usgs.gov/usgspubs/wri/wri874143. Cited 13 July 2011
  49. Faunt CC (ed) (2009) Ground-water availability of California’s Central Valley Aquifer, California. US Geol Surv Prof Pap 1766. http://pubs.usgs.gov/pp/1766/. Cited 13 July 2011
  50. Federal Geodetic Control Committee (1984) Standards and specifications for geodetic control networks. National Geodetic Survey, NOAA, Rockville, MD. http://www.ngs.noaa.gov/FGCS/tech_pub/1984-stds-specs-geodetic-control-networks.htm. Cited 13 July 2011
  51. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212CrossRefGoogle Scholar
  52. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20CrossRefGoogle Scholar
  53. Ferretti A, Novali R, Bürgmann R, Hilley G, Prati C (2004) InSAR permanent scatterer analysis reveals ups and downs in the San Francisco Bay Area. Eos 85(34):317–324CrossRefGoogle Scholar
  54. Floyd RP (1978) Geodetic bench marks. National Oceanic and Atmospheric Administration Manual NOS NGS 1. http://www.ngs.noaa.gov/PUBS_LIB/GeodeticBMs.pdf. Cited 13 July 2011
  55. Fruneau B, Sarti F (2000) Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophys Res Lett 27(24):3981–3984. doi:10.1029/2000GL008489 CrossRefGoogle Scholar
  56. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94:9183–9191CrossRefGoogle Scholar
  57. Galloway DL, Hoffmann J (2007) The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeol J 15(1):133–154. doi:10.1007/s10040-006-0121-5 CrossRefGoogle Scholar
  58. Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34(10):2573–2585CrossRefGoogle Scholar
  59. Galloway D, Jones DR, Ingebritsen SE (eds) (1999) Land subsidence in the United States. US Geol Surv Circ 1182. http://pubs.usgs.gov/circ/circ1182/. Cited 13 July 2011
  60. Galloway DL, Bawden GW, Leake SA, Honegger DG (2008) Land subsidence hazards. In: Baum RL et al (eds) Landslide and land subsidence hazards to pipelines. US Geol Surv Open-File Rep 2008–1164, chap. 2. http://pubs.usgs.gov/of/2008/1164/. Cited 13 July 2011
  61. Gambolati G, Freeze RA (1973) Mathematical simulation of the subsidence of Venice, 1: theory. Water Resour Res 9(3):721–733CrossRefGoogle Scholar
  62. Gambolati G, Teatini P, Baú D, Ferronato M (2000) Importance of poro-elastic coupling in dynamically active aquifers of the Po River basin, Italy. Water Resour Res 36(9):2443–2459CrossRefGoogle Scholar
  63. Gambolati G, Teatini P, Ferronato M (2005) Anthropogenic land subsidence. In: Anderson MG (ed) Encyclopedia of hydrological sciences. Wiley, Wiley Online Library, 17 pp. http://onlinelibrary.wiley.com/book/10.1002/0470848944;jsessionid=5ECA1E367646E2E75793ACE0CFBFDF11.d02t02. Cited 29 July 2011
  64. Gómez-Hernández JJ (2006) Complexity. Ground Water 44(6):782–785CrossRefGoogle Scholar
  65. Guarnieri AM, Rocca F (1999) Combination of low- and high-resolution SAR images for differential interferometry. IEEE Trans Geosci Rem Sens 37:2035–2049CrossRefGoogle Scholar
  66. Hanson RT (1989) Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona. US Geol Surv Water Resour Invest Rep 88–4172. http://pubs.er.usgs.gov/usgspubs/wri/wri884172. Cited 13 July 2011
  67. Hanson RT, Benedict JF (1994) Simulation of ground-water flow and potential land subsidence, upper Santa Cruz Basin, Arizona. US Geol Surv Water Resour Invest Rep 93–4196. http://pubs.er.usgs.gov/usgspubs/wri/wri934196. Cited 13 July 2011
  68. Hanson RT, Anderson SR, Pool DR (1990) Simulation of ground-water flow and potential land subsidence, Avra Valley, Arizona. US Geol Surv Water Resour Invest Rep 90–4178. http://pubs.er.usgs.gov/usgspubs/wri/wri904178. Cited 13 July 2011
  69. Hanson RT, Li Z, Faunt C (2003a) Application of the multi-node well package to the simulation of regional-aquifer systems in the Santa Clara Valley, California: MODFLOW and More 2003: Understanding through Modeling. Conference proceedings. International Ground Water Modeling Center, Golden, CO, 16–19 September 2003, pp 74–78Google Scholar
  70. Hanson RT, Martin P, Koczot KM (2003b) Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California. US Geol Surv Water Resour Invest Rep 02–4136. http://pubs.usgs.gov/wri/wri024136/text.html. Cited 13 July 2011
  71. Hanson RT, Li Z, Faunt C (2004) Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California. US Geol Surv Sci Invest Rep 2004–5231. http://pubs.usgs.gov/sir/2004/5231/. Cited 13 July 2011
  72. Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geol Surv Tech Methods 6-A16. http://pubs.usgs.gov/tm/2005/tm6A16/. Cited 13 July 2011
  73. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 2000–92. http://water.usgs.gov/nrp/gwsoftware/modflow2000/ofr00-92.pdf. Cited 13 July 2011
  74. Hayashia T, Tokunaga T, Aichi M, Shimada J, Taniguchi M (2009) Effects of human activities and urbanization on groundwater environments: an example from the aquifer system of Tokyo and the surrounding area. Sci Total Environ 407:3165–3172. doi:10.1016/j.scitotenv.2008.07.012 CrossRefGoogle Scholar
  75. Helm DC (1972) Simulation of aquitard compaction due to changes in stress. Trans Am Geophys Union 53(11):979, abstractsGoogle Scholar
  76. Helm DC (1975) One-dimensional simulation of aquifer system compaction near Pixley, Calif. 1: constant parameters. Water Resour Res 11(3):465–478CrossRefGoogle Scholar
  77. Helm DC (1976) One-dimensional simulation of aquifer system compaction near Pixley, Calif. 2: stress-dependent parameters. Water Resour Res 1(3):375–391CrossRefGoogle Scholar
  78. Helm DC (1978) Field verification of a one-dimensional mathematical model for transient compaction and expansion of a confined aquifer system, Verification of mathematical and physical models in hydraulic engineering. Proc 26th Hydraul Div Specialty Conf., College Park, MD. Amer. Soc. Civil Eng., Washington, DC, pp 189–196Google Scholar
  79. Helm DC (1984a) Field-based computational techniques for predicting subsidence due to fluid withdrawal. In: Holzer TL (ed) Man-induced land subsidence. Rev Eng Geol 6:1–22Google Scholar
  80. Helm DC (1984b) Latrobe Valley subsidence predictions: the modeling of time-dependent ground movement due to groundwater withdrawal. Joint Report of Fuel Department and Design Engineering and Environment Department, State Electricity Commission of Victoria, MelbourneGoogle Scholar
  81. Helm DC (1986) COMPAC: a field-tested model to simulate and predict subsidence due to fluid withdrawal. Austral Geomechan Comput Newslett 10:18–20Google Scholar
  82. Helm DC (1987) Three-dimensional consolidation theory in terms of the velocity of solids. Geotechnique 37(3):369–392CrossRefGoogle Scholar
  83. Helm DC (1994) Horizontal aquifer movement in a Theis-Thiem confined aquifer system. Water Resour Res 30(4):953–964CrossRefGoogle Scholar
  84. Helm DC (1998) Poroviscosity. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, vol 8, 4–5 Oct 1995, Sacramento, CA. Spec. Publ., Assoc. Eng. Geol., Star, Belmont, CA, pp 395–405Google Scholar
  85. Hernandez-Marin M, Burbey TJ (2009) The role of faulting on surface deformation patterns from pumping induced ground-water flow. Hydrogeol J 17(8):1859–1875. doi:10.1007/s10040-009-0501-8 CrossRefGoogle Scholar
  86. Hernandez-Marin M, Burbey TJ (2010a) Controls on initiation and propagation of pumping-induced earth fissures: insights from numerical simulations. Hydrogeol J 18(8):1773–1785. doi:10.1007/s10040-010-0642-9 CrossRefGoogle Scholar
  87. Hernandez-Marin M, Burbey TJ (2010b) On the mechanisms for earth fissuring in Las Vegas valley: a numerical analysis of pumping-induced deformation and stress. In: Carreón-Freyre D, Cerca M, Galloway DL (eds) Land subsidence, associated hazards and the role of natural resources development. Proceedings of the Eighth Int. Symp. on Land Subsidence, Santiago de Querétaro, Mexico, 17–22 October2010, IAHS Publ. 339, IAHS, Wallingford, UK, pp 27–32Google Scholar
  88. Herrera G, Tomás R, Monells D, Centolanza G, Mallorquí JJ, Vicente F, Navarro VD, Lopez-Sanchez JM, Sanabria M, Cano M, Mulas J (2010) Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng Geol 116(3–4):284–295. doi:10.1016/j.enggeo.2010.09.010 CrossRefGoogle Scholar
  89. Heywood CE (1993) Monitoring aquifer compaction and land subsidence due to ground-water withdrawal in the El Paso, Texas - Juarez, Chihuahua area. In: Prince KR, Galloway DL, Leake SA (eds) US Geological Survey Subsidence Interest Group Conference, Edwards Air Force Base, Antelope Valley, Calif. 18–19 November 1992, abstracts and summary, US Geol Surv Open-File Rep 94–532, http://pubs.usgs.gov/of/1994/ofr94-532/. Cited 13 July 2011
  90. Hoffmann J (2005) The future of satellite remote sensing in hydrogeology. Hydrogeol J 13(1):247–250. doi:10.1007/s10040-004-0409-2 CrossRefGoogle Scholar
  91. Hoffmann J, Zebker HA (2003) Prospecting for horizontal surface displacements in Antelope Valley, California, using satellite radar interferometry. J Geophys Res 108(F1):6011. doi:10.1029/2003JF000055 CrossRefGoogle Scholar
  92. Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566CrossRefGoogle Scholar
  93. Hoffmann J, Galloway DL, Zebker HA (2003a) Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour Res 39(2):SBH 5–1–5–10. doi:10.1029/2001WR001252 CrossRefGoogle Scholar
  94. Hoffmann J, Leake SA, Galloway DL, Wilson AM (2003b) MODFLOW-2000 ground-water model—User guide to the subsidence and aquifer-system compaction (SUB) package. US Geol Surv Open-File Rep 03–233 version 1.1.1. http://pubs.usgs.gov/of/2003/ofr03-233/. Cited 13 July 2011
  95. Hofton MA, Blair JB (2002) Laser altimeter return pulse correlation: a method for detecting surface topographic change. J Geodyn 34(3–4):477–489CrossRefGoogle Scholar
  96. Holzer TL (1981) Preconsolidation stress of aquifer systems in areas of induced land subsidence. Water Resour Res 17:693–704CrossRefGoogle Scholar
  97. Holzer TL (ed) (1984a) Man induced land subsidence. Geol. Soc of America, Washington, DC, 232 ppGoogle Scholar
  98. Holzer TL (1998) History of the aquitard-drainage model in land subsidence case studies and current research. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, vol 8. Sacramento, CA, 4–5 Oct 1995, Star, Belmont, CA, pp 7–12Google Scholar
  99. Holzner J, Bamler R (2002) Burst-mode and scanSAR interferometry. IEEE Trans Geosci Rem Sens 40:1917–1934CrossRefGoogle Scholar
  100. Hooper A, Zebker HA, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.1029/2004GL021737 CrossRefGoogle Scholar
  101. Hooper A, Segall P, Zebker HA (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112(B7):B07407. doi:10.1029/2006JB004763 CrossRefGoogle Scholar
  102. Hsieh PA (1996) Deformation-induced changes in hydraulic head during ground-water withdrawal. Ground Water 36(6):1082–1089CrossRefGoogle Scholar
  103. Hung WC, Hwang C, Chang CP, Yen JY, Liu CH, Yang WH (2010) Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River alluvial fan. Environ Earth Sci 59(7):1535–1548. doi:10.1007/s12665-009-0139-9 CrossRefGoogle Scholar
  104. Hwang C, Hung WC, Liu CH (2008) Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Nat Hazards 47:1–16. doi:10.1007/s11069-007-9211-5 CrossRefGoogle Scholar
  105. IAHS (1977) Proceedings of the Second International Symposium on Land Subsidence, Anaheim, Calif, Dec 1976. IAHS Publ. 121, IAHS, Wallingford, UK. http://iahs.info/redbooks/121.htm. Cited 13 July 2011
  106. Ikehara ME, Phillips SP (1994) Determination of land subsidence related to ground-water level declines using global positioning system and leveling surveys in Antelope Valley, Los Angeles and Kern Counties, California, 1992. US Geol Surv Water Resour Invest Rep 94–4184. http://pubs.er.usgs.gov/usgspubs/wri/wri944184. Cited 13 July 2011
  107. Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes, 2nd edn. Cambridge Univ. Press, New YorkGoogle Scholar
  108. Jackson JD (2005) The role of poroviscosity in evaluating land subsidence due to groundwater extraction from sedimentary basin sequences. RMIT, Melbourne, AustraliaGoogle Scholar
  109. Jackson JD, Helm DC, Brumley JC (2004) The role of poroviscosity in evaluating land subsidence due to groundwater extraction from sedimentary basin sequences. Geofís Int 43(4):689–695Google Scholar
  110. Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Am Geophys Un:574–586Google Scholar
  111. Jacob CE (1950) Flow of ground water. In: Rouse H (ed), Engineering hydraulics: Proceedings of the Fourth Hydraulics Conference, Iowa Institute of Hydraulic Research, Iowa City, IW, 12–15 June 1949Google Scholar
  112. Jeng DI (2005) A three-dimensional model of poroviscous aquifer deformation. Virginia Tech, Blacksburg, VAGoogle Scholar
  113. Johnson AI (ed) (1991) Land subsidence. Proceedings of the Fourth International Symposium on Land Subsidence, 12–17 May 1991, Houston, TX. IAHS Publ. 200. http://iahs.info/redbooks/200.htm. Cited 13 July 2011
  114. Johnson AI, Carbognin L, Ubertini L (eds) (1986) Land subsidence. Proceedings of the Third International Symposium on Land Subsidence, Venice, Italy, Mar 1984. IAHS Publ. 151. http://iahs.info/redbooks/151.htm. Cited 13 July 2011
  115. Jorgensen DG (1980) Relationships between basic soils-engineering equations and basic ground-water flow equations: US Geol Surv Water Suppl Pa 2064. http://pubs.er.usgs.gov/publication/wsp2064. Cited 13 July 2011
  116. Kampes D (2005) Displacement parameter estimation using permanent scatterer interferometry: DLR-Forschungsberichte 16Google Scholar
  117. Kasmarek MC, Strom EW (2002) Hydrogeology and simulation of ground-water flow and land-surface subsidence in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas. US Geol Surv Water Resour Invest Rep 02–4022. http://pubs.usgs.gov/wri/wri024022/. Cited 13 July 2011
  118. Kihm JH, Kim JM, Song SH, Lee GS (2007) Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. J Hydrol 335:1–14CrossRefGoogle Scholar
  119. Kim JM (2005) Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resour Res 41:W01003CrossRefGoogle Scholar
  120. Kim JM, Parizek RR (1999) A mathematical model for the hydraulic properties of deforming porous media. Ground Water 37(4):546–554CrossRefGoogle Scholar
  121. King NE, Argus D, Langbein J, Agnew DC, Bawden GW, Dollar RS, Liu Z, Galloway D, Reichard E, Yong A, Webb FH, Bock Y, Stark K, Barseghian D (2007) Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J Geophys Res 112:B03409. doi:10.1029/2006JB004448 CrossRefGoogle Scholar
  122. Kircher M (2004) Analyse flächenhafter senkungserscheinungen in sedimentären gebieten mit den neuen techniken der radarfernerkundung am beispiel der Niederrheinischen bucht [Analysis of extensive subsidence in sedimentary areas with the new techniques of radar remote sensing using the example of the lower Rhine basin]. PhD Thesis, Universität Bonn, GermanyGoogle Scholar
  123. Konikow LF, Neuzil CE (2007) A method to estimate groundwater depletion from confining layers. Water Resour Res 43:W07417. doi:10.1029/2006WR005597 CrossRefGoogle Scholar
  124. Kunisue S, Kokubo T (2010) In situ formation compaction monitoring in deep reservoirs using optical fibres. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds), Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, IAHS, Wallingford, UK, pp 368–370Google Scholar
  125. Larson KJ, Basagaolu H, Mario M (2001) Numerical simulation of land subsidence in the Los Banos-Kettleman City area, California. University of California Davis Water Resources Center technical completion report contribution 207. http://escholarship.org/uc/item/5h60p535?query=larson%20keith. Cited 13 July 2011
  126. Leake SA (1990) Interbed storage changes and compaction in models of regional ground-water flow. Water Resour Res 26(9):1939–1950CrossRefGoogle Scholar
  127. Leake SA (1991) Simulation of vertical compaction in models of regional ground-water flow. In: Johnson AI (ed) Land subsidence. Proceedings of the Fourth International Symposium on Land Subsidence, 12–17 May 1991, Houston, TX. IAHS Publ. 200, pp 565–574. http://iahs.info/redbooks/a200/iahs_200_0565.pdf. Cited 13 July 2011
  128. Leake SA, Galloway DL (2007) MODFLOW ground-water mode: user guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for water-table aquifers. USGS Tech and Methods Rep 6–A23. http://pubs.usgs.gov/tm/2007/06A23/. Cited 13 July 2011
  129. Leake SA, Galloway DL (2010) Use of the SUB-WT Package for MODFLOW to simulate aquifer-system compaction in Antelope Valley, California, USA. In: Carreón-Freyre D, Cerca M, Galloway DL (eds) Land subsidence, associated hazards and the role of natural resources development: proceedings. Eighth International Symposium on Land Subsidence, Santiago de Querétaro, Mexico, 17–22 October 2010, IAHS Publ. 339, pp 61–67Google Scholar
  130. Leake SA, Prudic DE (1991) Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model. US Geol Surv Tech Water Resour Invest, book 6, chap. A2. http://pubs.usgs.gov/twri/twri6a2/. Cited 13 July 2011
  131. Leighton DA, Phillips SP (2003) Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California. US Geol Surv Water Resour Invest Rep 03–4016. http://pubs.usgs.gov/wri/wrir034016/text.html. Cited 13 July 2011
  132. Leva D, Nico G, Tarchi D, Fortuny-Guasch J, Sieber AJ (2003) Temporal analysis of a landslide by means of a ground-based SAR Interferometer. IEEE Trans Geosci Remote Sens 41(4):745–752CrossRefGoogle Scholar
  133. Li J (2000) A nonlinear elastic solution for subsidence due to ASR applications to multi-aquifer systems. In: Carbognin L, Gambolati G, Johnson AI (eds) Land subsidence. Proceedings of the Sixth International Symposium on Land Subsidence, vol 2, Ravenna, Italy, 24–29 Sept 2000, La Garagolav, Padova, Italy, pp 331–342Google Scholar
  134. Li J (2003) A nonlinear elastic solution of 1-D subsidence due to aquifer storage and recovery applications. Hydrogeol J 11:646–658CrossRefGoogle Scholar
  135. Li J (2007a) Transient radial movement of a confined leaky aquifer due to variable well flow rates. J Hydrol 333(2–4):542–553CrossRefGoogle Scholar
  136. Li J (2007b) Analysis of radial movement of an unconfined leaky aquifer due to pumping and injection. Hydrogeol J 15(6):1063–1076CrossRefGoogle Scholar
  137. Li J (2007c) Analysis of radial movement of a confined aquifer due to pumping and injection. Hydrogeol J 15(3):442–458CrossRefGoogle Scholar
  138. Li J, Helm DC (1995) A general formulation for aquifer deformation under dynamic and viscous conditions. In: Barends FBJ, Brouwer FJJ, Schröder FH (eds) Land subsidence. Proceedings of the Fifth International Symposium on Land Subsidence, The Hague, Netherlands, October 1995. IAHS Publ. 234, pp 323–332. http://iahs.info/redbooks/a234/iahs_234_0323.pdf. Cited 13 July 2011
  139. Li J, Helm DC (1997) Numerical formulation of dynamic behavior within saturated soil characterized by elasto-viscous behavior with an application to Las Vegas Valley. In: Yuan J (ed) Computer method and advances in geomechanics. Proceedings of the 9th International Conference of the International Association for Computer Method and Advances in Geomechanics, vol 2, Wuhan, China, Balkema, Rotterdam, pp 911–916Google Scholar
  140. Li J, Helm DC (1998) A theory for dynamic motion of saturated soil characterized by viscous behavior. In: Borchers J (ed) Land subsidence case histories and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence. Spec. Publ. 8, Assoc. Eng. Geol., Denver, CO, pp 356–407Google Scholar
  141. Li J, Helm DC (2000) Nonlinear viscous model for aquifer compression associated with ASR applications. In: Carbognin L, Gambolati G, Johnson AI (eds) Land subsidence. Proceedings of the Sixth International Symposium on Land Subsidence, vol 2, Ravenna, Italy, 24–29 Sept 2000, La Garagolav, Padova, Italy, pp 319–330Google Scholar
  142. Li J, Helm DC (2001a) Using an analytical solution to estimate the subsidence risk caused by ASR applications. J Env Eng Geosci 7(1):67–79Google Scholar
  143. Li J, Helm DC (2001b) Elastic solutions of 1-D subsidence due to ASR applications. Proceedings of the World Water and Environmental Resources Congress. Paper No. 206, EWRI-ASCE, Orlando, FLGoogle Scholar
  144. Li J, Helm DC (2001c) A nonlinear elasto-viscous model for subsidence due to artificial recharge-discharge. Proceedings of the 36th Symposium on Geological Engineering and Geotechnical Engineering, University of Nevada Las Vegas, Las Vegas, NV, pp 437–446Google Scholar
  145. Liu Y, Helm DC (2008a) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. Methods. Water Resour Res 44:W07423. doi:10.1029/2007WR006605 CrossRefGoogle Scholar
  146. Liu Y, Helm DC (2008b) Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 2. field application. Water Resour Res 44:W07424. doi:10.1029/2007WR006606 CrossRefGoogle Scholar
  147. Liu CH, Pan YW, Liao JJ, Hung WC (2004) Estimating coefficients of volume compressibility from compression of strata and piezometric changes in multiaquifer system in west Taiwan. Eng Geol 75:33–47. doi:10.1016/j.enggeo.2004.04.007 CrossRefGoogle Scholar
  148. Lofgren BE (1969) Field measurement of aquifer-system compaction, San Joaquin Valley, California, U.S.A. In: Tison LJ (ed) Land subsidence. Proceedings of the Tokyo Symposium, Sept 1969, IAHS Publ. 88, pp 272–284. http://iahs.info/redbooks/a088/088031.pdf. Cited 13 July 2011
  149. Lu Z, Dzurisin D, Jung HS, Zhang JX, Zhang YH (2010) Radar image and data fusion for natural hazards characterization. Int J Image Data Fusion 1:217–242CrossRefGoogle Scholar
  150. Lubis AM, Sato T, Tomiyama N, Isezaki N, Yamanokuchi T (2011) Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. J Asian Earth Sci 40:1079–1088. doi:10.1016/j.jseaes.2010.12.001 CrossRefGoogle Scholar
  151. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441–500CrossRefGoogle Scholar
  152. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Tech Water Resour Inv, book 6, chap. A1 [also available in Chinese]. http://pubs.usgs.gov/twri/twri6a1/. Cited 13 July 2011
  153. Meinzer OE (1928) Compressibility and elasticity of artesian aquifers. J Geol 23(3):263–291Google Scholar
  154. Meinzer OE, Hard HA (1925) The artesian-water supply of the Dakota Sandstone in North Dakota with special reference to the Edgeley Quadrangle. US Geol Surv Water Suppl Pap 520-E:73–96Google Scholar
  155. Metzger LF, Ikehara ME, Howle JF (2002) Vertical-deformation, water-level, microgravity, geodetic, water-chemistry, and flow-rate data collected during injection, storage, and recovery tests at Lancaster, Antelope Valley, California, September 1995 through September 1998. US Geol Surv Open-File Rep 01–414. http://pubs.usgs.gov/of/2001/ofr01414/. Cited 13 July 2011
  156. Meyer WR, Carr JE (1979) A digital model for simulation of ground-water hydrology in the Houston area, Texas. US US Geol Surv Open-File Rep 79–677Google Scholar
  157. Miura N, Hayashi S, Madhav MR, Hachiya Y (1995) Problems of subsidence and their mitigation in Saga Plain, Japan. In: Barends FBJ, Brouwer FJJ, Schröder FH (eds) Land subsidence. Proceedings of the Fifth International Symposium on Land Subsidence, vol 2. October 1995, The Hague, Netherlands. IAHS Publ. 234, pp 463–469. http://iahs.info/redbooks/a234/iahs_234_0463.pdf. Cited 13 July 2011
  158. Morgan DS, Dettinger MD (1996) Ground-water conditions in Las Vegas Valley, Clark County, Nevada, part 2: hydrogeology and simulation of ground-water flow. US Geol Surv Water Suppl Pap 2320-B. http://pubs.er.usgs.gov/usgspubs/wsp/wsp2320B. Cited 13 July 2011
  159. Motagh M, Djamour Y, Walter TR, Wetzel H-U, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. doi:10.1111/j.1365-246X.2006.03246.x CrossRefGoogle Scholar
  160. Narasimhan TN, Witherspoon PA (1977) Numerical model for land subsidence in shallow groundwater systems. Proceedings of the Second International Symposium on Land Subsidence, Anaheim, CA, December 1976, IAHS Publ. 121, pp 133–144. http://iahs.info/redbooks/a121/iahs_121_0133.pdf. Cited 13 July 2011
  161. National Research Council (1991) Mitigating losses from land subsidence in the United States. National Academy Press, Washington, DCGoogle Scholar
  162. Neuman SP, Witherspoon PA (1972) Field determination of hydraulic properties of leaky multiple aquifer systems. Water Resour Res 8(5):1284–1298CrossRefGoogle Scholar
  163. Neuman SP, Preller C, Narasimhan TN (1982) Adaptive explicit-implicit quasi three-dimensional finite element model of flow and subsidence in multiaquifer systems. Water Resour Res 18(5):1551–1561CrossRefGoogle Scholar
  164. Neuzil CE (1986) Groundwater flow in low-permeability environments. Water Resour Res 22(8):1163–1195CrossRefGoogle Scholar
  165. Nishikawa T, Rewis DL, Martin P (2001) Numerical simulation of ground-water flow and land subsidence at Edwards Air Force Base, Antelope Valley, California. US Geol Surv Water Resour Invest Rep 01–4038Google Scholar
  166. NOAA (2011) CORS: Continuously Operation Reference Station. National Geodetic Survey, National Oceanic and Atmospheric Administration, Washington, DC. http://www.ngs.noaa.gov/CORS/. Cited 13 July 2011.
  167. Ortega-Guerrero A, Rudolph DL, Cherry JA (1999) Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35(11):3327–3341CrossRefGoogle Scholar
  168. Osmanoglu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs 13:1–12. doi:10.1016/j.jag.2010.05.009 CrossRefGoogle Scholar
  169. Pavelko MT (2000) Ground-water and aquifer-system-compaction data from the Lorenzi Site, Las Vegas, Nevada, 1994–99. US Geol Surv Open-File Rep 00–362. http://pubs.er.usgs.gov/usgspubs/ofr/ofr00362. Cited 13 July 2011
  170. Pavelko MT (2003) Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi Site, Las Vegas, Nevada. US Geol Surv Water Resour Invest Rep 03–4083. http://pubs.usgs.gov/wri/wri034083/index.html. Cited 13 July 2011
  171. Pavelko, MT, Hoffmann, J, Damar, NA (2006) Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992–99. US Geol Surv Sci Invest Rep 2006–5218. http://pubs.usgs.gov/sir/2006/5218/. Cited 13 July 2011
  172. Phien-wej N, Giao PH, Nutalaya P (2006) Land subsidence in Bangkok, Thailand. Eng Geol 82:187–201CrossRefGoogle Scholar
  173. Phillips SP, Carlson CS, Metzger LF, Howle JF, Galloway DL, Sneed M, Ikehara ME, Hudnut KW, King NE (2003) Analysis of tests of subsurface injection, storage, and recovery of freshwater in Lancaster, Antelope Valley, California. US Geol Surv Water Resour Invest Rep 03–4061. http://ca.water.usgs.gov/pubs/wrir_03-4061.html. Cited 13 July 2011
  174. Poland JF (ed) (1984) Guidebook to studies of land subsidence due to ground-water withdrawal. UNESCO Studies and Reports in Hydrology 40, UNESCO, Paris. http://wwwrcamnl.wr.usgs.gov/rgws/Unesco/. Cited 13 July 2011
  175. Poland JF, Davis GH (1969) Land subsidence due to withdrawal of fluids. Rev Eng Geol 2:187–269Google Scholar
  176. Pope JP, Burbey TJ (2003) Characterization and modeling of land subsidence due to ground-water withdrawals from the confined aquifers of the Virginia Coastal Plain. In: Prince KR, Galloway DL (eds) U.S. Geological Survey Subsidence Interest Group Conference, Proceedings of the technical meeting, Galveston, Texas, 27–29 Nov 2001. US Geol Surv Open-File Rep 03–308:49–56. http://pubs.usgs.gov/of/2003/ofr03-308/. Cited 13 July 2011
  177. Pope JP, Burbey TJ (2004) Multiple-aquifer characterization from single borehole extensometer records. Ground Water 42(1):45–58CrossRefGoogle Scholar
  178. Prince KR, Galloway DL (eds) (2003) U.S. Geological Survey Subsidence Interest Group Conference, Proceedings of the Technical Meeting, 27–29 Nov 2001, Galveston, TX. US Geol Surv Open-File Rep 03–308. http://pubs.usgs.gov/of/2003/ofr03-308/. Cited 13 July 2011
  179. Prince KR, Leake SA (eds) (1997) U.S. Geological Survey Subsidence Interest Group Conference, Proceedings of the technical meeting, Las Vegas, NV, 14–16 Feb 1995. US Geol Surv Open-File Rep 97–47. http://pubs.usgs.gov/of/1997/ofr97-047/. Cited 13 July 2011
  180. Prince KR, Galloway DL, Leake SA (eds) (1995) U.S. Geological Survey Subsidence Interest Group Conference, Edwards Air Force Base, Antelope Valley, California, 18–19 Nov 1992: abstracts and summary. US Geol Surv Open-File Rep 94–532. http://pubs.usgs.gov/of/1994/ofr94-532/. Cited 13 July 2011
  181. Reeves J, Knight RJ, Zebker HA, Schreüder W, Agram PS, Lauknes T (2010) InSAR data produce specific storage estimates for an agricultural area in the San Luis Valley, Colorado. AGU Fall Meeting 2010, abstract no. H11K-08, AGU, Washington, DCGoogle Scholar
  182. Riley FS (1969) Analysis of borehole extensometer data from central California. In: Tison LJ (ed) Land subsidence. Proceedings of the Tokyo Symposium, Sept 1969, IAHS Pub. 88:423–431. http://iahs.info/redbooks/a088/088047.pdf. Cited 13 July 2011
  183. Riley FS (1986) Developments in borehole extensometry. In: Johnson AI, Carbognin L, Ubertini L (eds) Land subsidence. Proceedings of the Third International Symposium on Land Subsidence, Venice, Italy, March 1984, IAHS Pub. 151, pp 169–186. http://iahs.info/redbooks/a151/iahs_151_0169.pdf. Cited 13 July 2011
  184. Riley FS (1998) Mechanics of aquifer systems: the scientific legacy of Joseph F. Poland. In: Borchers JW (ed) Land subsidence case studies and current research. Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, vol 8, 4–5 Oct 1995, Sacramento, CA, Star , Belmont, CA, pp 13–27Google Scholar
  185. Sæbø TO (2010) Seafloor depth estimation by means of interferometric synthetic aperture sonar. PhD Thesis, University of Tromsø, Norway. http://munin.uit.no/munin/bitstream/10037/2793/3/thesis.pdf. Cited 13 July 2011
  186. Sandhu RS (1979) Modeling land subsidence. In: Saxena SK (ed) Evaluation and prediction of subsidence. American Soc. of Civil Eng., Washington, DCGoogle Scholar
  187. Schmidt DA, Bürgmann R (2003) Time dependent land uplift and subsidence in the Santa Clara Valley, California, from a large InSAR data set. J Geophys Res 108(B9). doi:10.1029/2002JB002267
  188. Schomaker MC, Berry RM (1981) Geodetic leveling. NOAA Manual NOS NGS 3. http://www.ngs.noaa.gov/PUBS_LIB/Geodeticleveling_nos_3.pdf. Cited 13 July 2011
  189. Scott RF (1963) Principles of soil mechanics. Addison, Palo Alto, CAGoogle Scholar
  190. Shearer TR (1998) A numerical model to calculate land subsidence, applied at Hangu in China. Eng Geol 49:85–93CrossRefGoogle Scholar
  191. Sheng Z, Helm DC, Li J (2003) Mechanisms of earth fissuring caused by groundwater withdrawal. Env Eng Geosci 9(4):313–324CrossRefGoogle Scholar
  192. Singh B, Saxena NC (1991) Land Subsidence. International Symposium, 11–15 Dec, 1989. Central Mining Research Station (Dhanbad, India). Balkema, Rotterdam, the NetherlandsGoogle Scholar
  193. Sneed M (2010) Measurement of land subsidence using interferometry, Coachella Valley, California. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development (EISOLS 2010). IAHS Publ. 339, pp 260–263Google Scholar
  194. Sneed M, Brandt JT (2007) Detection and measurement of land subsidence using global positioning system surveying and interferometric synthetic aperture radar, Coachella Valley, California, 1996–2005. US Geol Surv Sci Invest Rep 2007–5251. http://pubs.usgs.gov/sir/2007/5251/. Cited 13 July 2011
  195. Sneed M, Galloway DL (2000) Aquifer-system compaction and land subsidence: measurements, analyses, and simulations: the Holly site, Edwards Air Force Base, Antelope Valley, California. US Geol Surv Water-Resour Invest Rep 00–4015. http://pubs.usgs.gov/wri/2000/wri004015/. Cited 13 July 2011
  196. Taylor DW (1948) Fundamentals of soil mechanics. Wiley, New York, p 700Google Scholar
  197. Teatini P, Tosi L, Strozzi T, Carbognin L, Wegmüller U, Rizzetto F (2005) Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Rem Sens Env 98. doi:10.1016/j.rse.2005.08.002
  198. Terzaghi K (1923) Die berechnung der durchlässigkeitziffer des tones aus dem verlauf der hydrodymanischen spannungserscheinungen [The computation of permeability of clays from the progress of hydrodynamic strain]. Sitzungsberichte, Mathematisch-naturwissenschaftliche Klasse, Part IIa 132, Akademie der Wissenschaften, Vienna, pp 125–138Google Scholar
  199. Terzaghi K (1925) Settlement and consolidation of clay. McGraw-Hill, New York, pp 874–878Google Scholar
  200. Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport (draft edition 23 July 2010). Groundwater Simulations Group, University of Waterloo, Waterloo, ON. http://hydrogeosphere.org/. Cited 13 July 2011
  201. Tison LJ (ed) (1969) Land subsidence. Proceedings of the Tokyo Symposium, Sept 1969, UNESCO Studies and Reports in Hydrology 8, IAHS Pub., pp 88–89. http://iahs.info/redbooks/088.htm. Cited 13 July 2011
  202. Tolman CF, Poland JF (1940) Ground-water, salt-water infiltration, and ground-surface recession in Santa Clara Valley, Santa Clara County, California. Trans Am Geophys Union 1:23–35Google Scholar
  203. Usai S (2001) A new approach for long term monitoring of deformations by differential SAR interferometry. PhD Thesis, Technische Universiteit Delft, the NederlandsGoogle Scholar
  204. Verruijt A (1969) Elastic storage of aquifers. In: De Wiest RJM (ed) Flow through porous media. Academic, New YorkGoogle Scholar
  205. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton, NJGoogle Scholar
  206. Wang GY, You G, Shi B, Yu J, Tuck M (2009) Long-term land subsidence and strata compression in Changzhou, China. Eng Geol 104:109–118CrossRefGoogle Scholar
  207. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. Proc 2003 IEEE Int. Geoscience Remote Sensing Symp., vol 7, pp 4362–4364. doi:10.1109/IGARSS.2003.1295516 Google Scholar
  208. Werner C, Strozzi T, Wiesmann A, Wegmuller U (2008) A real-aperture radar for ground-based differential interferometry. Proc 2008 IEEE Int Geosci Remote Sensing Symposium, vol 3, Boston, MA, July 2008, pp 210–213. doi:10.1109/IGARSS.2008.4779320 Google Scholar
  209. Wildermuth Environmental Inc (2006) Chino Basin optimum basin management program: management zone 1 interim monitoring program—MZ1 summary report, prepared for the MZ-1 Technical Committee, Wildermuth, Lake Forest, CAGoogle Scholar
  210. Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California: US Geol Surv Prof Pap 1401-D. http://pubs.er.usgs.gov/usgspubs/pp/pp1401D. Cited 13 July 2011
  211. Wilson AM, Gorelick S (1996) The effects of pulsed pumping on land subsidence in the Santa Clara Valley, California. J Hydrol 174:375–396CrossRefGoogle Scholar
  212. Wisely BA, Schmidt D (2010) Deciphering vertical deformation and poroelastic parameters in a tectonically active fault-bound aquifer using InSAR and well level data, San Bernardino basin, California. Geophys J Int 181(3):1185–1200Google Scholar
  213. Witherspoon PA, Freeze RA (1972) The role of aquitards in a multiple-aquifer system. Geotimes 17(4):22–24Google Scholar
  214. Wolff RG (1970) Relationship between horizontal strain near a well and reverse water-level fluctuations. Water Resour Res 6:1721–1728CrossRefGoogle Scholar
  215. Worawattanamateekul J, Hoffmann J, Adam N et al (2004) Radar interferometry technique for urban subsidence monitoring: a case study in Bangkok and its vicinity. ENVISAT Symposium 2004, Salzburg, Austria, 6–10 Sept 2004Google Scholar
  216. Zhang A, Gong S, Carbognin L, Johnson AI (eds) (2005) Land subsidence. Proceedings of the 7th International Symposium on Land Subsidence, Oct 2005, vols 1–2. Shanghai Scientifi, Shanghai, PRCGoogle Scholar
  217. Zhao C-Y, Zhang Q, Yang C, Zou W (2011) Integration of MODIS data and Short Baseline Subset (SBAS) technique for land subsidence monitoring in Datong, China. J Geodyn 52:16–23. doi:10.1016/j.jog.2010.11.004 CrossRefGoogle Scholar
  218. Zilkoski DB, D’Onofrio JD, Frakes SJ (1997) Guidelines for establishing GPS-derived ellipsoid heights (standards: 2 cm and 5 cm), ver. 4.3. NOAA Technical Memorandum NOS NGS-58. http://geodesy.noaa.gov/PUBS_LIB/NGS-58.pdf. Cited 13 July 2011
  219. Zilkoski DB, Hall LW, Mitchell GJ et al (2003) The Harris-Galveston Coastal Subsidence District/National Geodetic Survey automated GPS subsidence monitoring project. In: Prince KR, Galloway DG (eds) U.S. Geological Survey Subsidence Interest Group Conference, Proceedings of the technical meeting, Galveston, TX, 27–29 Nov 2001. US Geol Surv Open-File Rep 03–308. http://pubs.usgs.gov/of/2003/ofr03-308/. Cited 13 July 2011
  220. Zilkoski DB, Carlson EE, Smith CL (2008) Guidelines for establishing GPS-derived orthometric heights (standards: 2 cm and 5 cm), ver. 4.3. NOAA Technical Memorandum NOS NGS-59. http://www.ngs.noaa.gov/PUBS_LIB/NGS592008069FINAL2.pdf. Cited 30 July 2011 . Cited 13 July 2011

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  1. 1.US Geological SurveySacramentoUSA
  2. 2.Virginia TechBlacksburgUSA

Personalised recommendations