Hydrogeology Journal

, Volume 11, Issue 1, pp 100–112

Effects of crustal stresses on fluid transport in fractured rock: case studies from northeastern and southwestern USA

Article

Abstract

The link between stress and hydrologic properties was examined at two sites that are distinguished by different rock types and different stress states. This investigation is based upon the analysis and interpretation of geophysical logs obtained in water wells at the two locations. At the northeast site (Newark Basin), the hydrologic characteristics of sedimentary rocks are dependent upon the relationship to the current regional stress field of two primary types of orthogonal features that serve as preferential pathways for fluid flow. Subhorizontal bedding-plane partings are highly transmissive near the surface and delineate transversely isotropic fluid flow at shallow depths. With increasing depth, the subhorizontal planes become less dominant and steeply dipping fractures become more influential hydrologically. These high-angle features define anisotropic flow pathways that are preferentially oriented along strike. At the southwest site (west Texas), extrusive rocks are subjected to topographically modified tectonic and gravitational stresses that vary spatially within a valley setting. The attendant changes in stress invariants cause fracture connectivity within the rock mass to systematically increase with depth along the valley flanks, but to remain relatively low in the central valley. The degree of fracture connectivity predicted within this valley configuration is consistent with variations in transmissivity determined at several well locations. In each of these cases, the idealized understanding of the hydrologic system is enhanced by considering the effects of regional and local stresses that act upon the fractured-rock aquifer.

Keywords

Crustal stresses Fluid transport Fractured rock USA 

Résumé

La relation entre les propriétés hydrologiques et la contrainte est étudiée sur deux sites distincts par les types de roches et leurs états de contraintes différents. Cette étude est basée sur l'analyse et l'interprétation de logs géophysiques obtenus dans des puits en deux endroits. Sur le site nord-est (le bassin de Newark), les caractéristiques hydrologiques des roches sédimentaires dépendent de la relation entre le champ actuel de contraintes régionales et les deux types primaires de plans orthogonaux conduisant préférentiellement les écoulements souterrains. Les plans de stratification subhorizontaux sont très transmissifs près de la surface et déterminent transversalement un écoulement isotrope aux faibles profondeurs. Avec l'accroissement de la profondeur, les plans subhorizontaux deviennent moins importants et les fractures à fort pendage jouent un rôle hydrologique plus déterminant. Ces plans sécants à grands angles définissent des écoulements anisotropes préférentiels selon leur orientation. Sur le site sud-ouest (Texas occidental), des roches effusives ont contribué à modifier topographiquement les contraintes tectoniques et gravitationnelles qui varient spatialement selon la disposition de la vallée. Les changements associés aux invariants de la contrainte sont la cause d'un accroissement systématique de la connectivité de fractures de la masse rocheuse en profondeur sur les flancs de la vallée; la connectivité reste cependant relativement faible au centre. Le degré de connectivité de fracture prédit dans cette configuration de la vallée est compatible avec les variations de transmissivité déterminées dans des puits en plusieurs endroits. Dans chacun de ces cas, notre compréhension théorique du système hydrologique est améliorée par la prise en compte des effets des contraintes régionales et locales qui agissent sur l'aquifère fracturé.

Resumen

Se examina el nexo entre los esfuerzos y las propiedades hidrológicas en dos emplazamientos que se distinguen por tener diferentes litologías y estados tensionales. La investigación está basada en el análisis e interpretación de registros geofísicos obtenidos en pozos de ambos lugares. En el emplazamiento situado al Nordeste (cuenca Newark), las características hidrológicas de las rocas sedimentarias dependen de la relación con el campo regional de esfuerzos actual de dos tipos primarios de características ortogonales que actúan como caminos preferentes de flujo. Las separaciones subhorizontales del plano de estratificación son muy transmisivas cerca de la superficie y delinean un flujo transversal isótropo a profundidades someras. A mayor profundidad, los planos subhorizontales son menos dominantes, mientras que las fracturas con buzamientos acusados se convierten en hidráulicamente más influyentes. Estas fracturas de alto ángulo definen esquemas anisótropos de flujo que se orientan preferentemente a lo largo de su dirección. En el emplazamiento del Sudoeste (oeste de Texas), las rocas extrusivas están sometidas a tensiones tectónicas modificadas por la topografía y a tensiones gravitacionales que varían espacialmente dentro del valle. Los cambios consiguientes en invariantes de los esfuerzos crean conectividades entre fracturas del macizo rocoso, que aumentan sistemáticamente con la profundidad a la largo de los flancos del valle, pero son relativamente bajas en la zona central. El grado de conectividad de las fracturas predicho con esta configuración del valle es coherente con las variaciones de transmisividad determinadas en diferentes pozos. En cada caso, nuestro conocimiento idealizado del sistema hidrológico mejora si consideramos los efectos de los esfuerzos regionales y locales que actúan en el acuífero formado por rocas fracturadas.

References

  1. Bai T, Pollard DD (2000) Fracture spacing in layered rocks: a new explanation based on the stress transition. J Struct Geol 22:43–47CrossRefGoogle Scholar
  2. Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Sci Geomech Abstr 20:249–268Google Scholar
  3. Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23(8):683–686CrossRefGoogle Scholar
  4. Beeler NM, Hickman SH (2001) A note on contact stress and closure in models of rock joints and faults. Geophys Res Lett 28:607–610Google Scholar
  5. Bell JS, Babcock EA (1986) The stress regime of the Western Canadian Basin and implications for hydrocarbon production. Bull Can Petrol Geol 34:364–378Google Scholar
  6. Bell JS, Gough DI (1979) Northeast–southwest compressive stress in Alberta: evidence from oil wells. Earth Planet Sci Lett 45:475–482CrossRefGoogle Scholar
  7. Berkowitz B, Naumann C, Smith L (1994) Mass transfer at fracture intersections: an evaluation of mixing models. Water Resour Res 30:1765–1773Google Scholar
  8. Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 89:4939–4948Google Scholar
  9. Bruno MS, Bovberg CA, Nakagawa FM (1991) Anisotropic stress influence on the permeability of weakly-cemented sandstones. In: Roegiers E (ed) Rock mechanics as a multi-disciplinary science. Balkema, Rotterdam, pp 375–383Google Scholar
  10. Chen WF, Saleeb AF (1982) Constitutive equations for engineering materials, vol 1. Wiley, New YorkGoogle Scholar
  11. Clemo T, Smith L (1997) A hierarchical model for solute transport in fractured media. Water Resour Res 33:1763–1783Google Scholar
  12. Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Sci Geomech Abstr 29:198–223Google Scholar
  13. Dickerson PW, Muehlberger WR (eds) (1985) Structure and tectonics of Trans-Pecos Texas. West Texas Geology Society Field Conference, Publ 85-81Google Scholar
  14. Doser DI (1998) Seismic hazards of the Rio Grande rift/Great Plains transition zone in west Texas and southern New Mexico. Seismol Res Lett 69:141Google Scholar
  15. Doser DI, Baker MR, Luo M, Marroquin P, Ballesteros L, Kingwell J, Diaz HL, Kaip G (1992) The not so simple relationship between seismicity and oil production in the Permian Basin, west Texas. Pure Appl Geophys 139:481–506Google Scholar
  16. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Quart Appl Math 10:157–165Google Scholar
  17. Einstein HH, Dershowitz WS (1990) Tensile and shear fracturing in predominantly compressive stress fields a review. Eng Geol 29:149–172Google Scholar
  18. Ferrill DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9(5):1–8Google Scholar
  19. Froelich AJ, Robinson GR Jr (eds) (1988) Studies of the Early Mesozoic basins of the eastern United States. US Govt Printing Office. US Geological Survey Bull 1776Google Scholar
  20. Gentier S, Hopkins D, Riss J (2000) Role of fracture geometry in the evolution of flow paths under stress. In: Dynamics of fluids in fractured rock. AGU Geophysical Monograph 122, Washington, DC, pp 169–184Google Scholar
  21. Hearst JR, Nelson PH, Paillet FL (2000) Well logging for physical properties, 2nd edn. Wiley, New YorkGoogle Scholar
  22. Heffer KJ, Fox RJ, McGill CA, Koutsabeloulis NC (1995) Novel techniques show links between reservoir flow directionality, Earth stress, fault structure and geomechanical changes in mature water floods. Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, Texas, pp 77–87Google Scholar
  23. Hillis RR (1998) The influence of fracture stiffness and the in situ stress field on the closure of natural fractures. Petrol Geosci 4:57–65Google Scholar
  24. Houghton HF (1990) Hydrogeology of the early Mesozoic rocks of the Newark Basin, NJ. In: Kroll RL, Brown JO (eds) Proc Aspects of Groundwater in New Jersey. Geological Association of New Jersey 7th Annual Meeting, New Jersey, E1-E36Google Scholar
  25. Hudson JA, Harrison JP (1997) Engineering rock mechanics: an introduction to the principles. Elsevier, New YorkGoogle Scholar
  26. Jaeger JC, Cook NGW (1977) Fundamentals of rock mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  27. LBG-Guyton Assoc (1998) Preliminary evaluation of potential groundwater supply development for the city of Alpine, Texas. LBG-Guyton Assoc. TexasGoogle Scholar
  28. Littleton RT, Audsley GL (1957) groundwater geology of the Alpine area, Brewster, Jeff Davis and Presidia Counties. Texas Board Water Eng Bull 5712Google Scholar
  29. Long JCS, Aydin A, Brown SR, Einstein HH, Hestir K, Hsieh PA, Myer LR, Nolte KG, Norton DL, Olsson OL, Paillet FL, Smith JL, Thomsen L (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DCGoogle Scholar
  30. Lyttle PT, Epstein JB (1987) Geologic map of the Newark 1x2° quadrangle. New Jersey, Pennsylvania, and New York, 1:250,000 USGS Misc. Investigations Series Map I-1715Google Scholar
  31. McAnulty WN (1950) Geology and groundwater resources of Alpine and adjacent territory, Brewster County, Texas. Report for the City of AlpineGoogle Scholar
  32. Michael AJ (1984) Determination of stress from slip data. J Geophys Res 89:11517–11526Google Scholar
  33. Michalski A (1990) Hydrogeology of the Brunswick (Passaic) Formation and implications for groundwater monitoring practice. Ground Water Monitor Rev 10:134–143Google Scholar
  34. Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock evidence from the Newark Basin, New Jersey. Ground Water 35:318–327Google Scholar
  35. Moreno L, Neretnieks I (1993) Fluid flow and solute transport in a network of channels. J Contam Hydrol 14:163–192Google Scholar
  36. Morin RH, Savage WZ (2002) Topographic stress perturbations in Southern Davis Mountains, west Texas: II. Hydrogeologic implications. J Geophys Res (in press)Google Scholar
  37. Morin RH, Carleton GB, Poirier S (1997) Fractured-aquifer hydrogeology from geophysical logs; the Passaic Formation, New Jersey. Ground Water 35:328–338Google Scholar
  38. Morin RH, Senior LA, Decker ER (2000) Fractured-aquifer hydrogeology from geophysical logs: Brunswick Group and Lockatong Formation, Pennsylvania. Ground Water 38:182–192Google Scholar
  39. Niemi A, Konitio K, Kuusela-Lahtinen A (2000) Hydraulic characterization and upscaling of fracture networks based on multiple-scale well test data. Water Resour Res 36:3481–3497Google Scholar
  40. Olsen PE (1980) The latest Triassic and early Jurassic formations of the Newark Basin (eastern North America, Newark Supergroup): stratigraphy, structure, and correlation. New Jersey Acad Sci Bull 25:25–51Google Scholar
  41. Ouillon G, Castaing C, Sornette D (1996) Hierarchical geometry of faulting. J Geophys Res 101:5477–5487Google Scholar
  42. Park Y-J, Lee K-K, Berkowitz B (2001) Effects of junction transfer characteristics on transport in fracture networks. Water Resour Res 37:909–923Google Scholar
  43. Parker RA, Houghton HF, McDowell RC (1988) Stratigraphic framework and distribution of early Mesozoic rocks of the Northern Newark Basin, New Jersey and New York. In: Froelich AJ, Robinson GR Jr (eds) Studies of the Early Mesozoic basins of the Eastern United States. USGS. Bull 1776:31–39Google Scholar
  44. Pollard DD, Aydin A (1988) Progress in understanding jointing over the past century. Geol Soc Am Bull 100:1181–1204CrossRefGoogle Scholar
  45. Price JG, Henry CD (1985) Summary of Tertiary stress orientations and tectonic history of Trans-Pecos Texas. In: Dickerson PW, Muehlberger WR (eds) Structure and tectonics of Trans-Pecos Texas. West Texas Geological Society Field Conference Publ 85-81, pp 149–151Google Scholar
  46. Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Mineral Sci Geomech Abstr 13:135–148Google Scholar
  47. Renshaw CE (2000) Fracture spatial density and the anisotropic connectivity of fracture networks. In: Dynamics of fluids in fractured rock. AGU Geophysical Monograph 122, Washington, DC, pp 203–211Google Scholar
  48. Savage WZ, Morin RH (2002) Topographic stress perturbations in Southern Davis Mountains, west Texas: I. Polarity reversal of principal stresses. J Geophys Res (in press)Google Scholar
  49. Savage WZ, Swolfs HS (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J Geophys Res 91:3677–3685Google Scholar
  50. Savage WZ, Swolfs HS (1987) SLIP-A FORTRAN computer program for computing the potential for sliding on arbitrarily oriented weakness planes in triaxial stress states. USGS Open-file Report 87-82Google Scholar
  51. Savage WZ, Swolfs HS, Powers PS (1985) Gravitational stresses in long symmetric ridges and valleys. Int J Rock Mech Mining Sci Geomech Abstr 22:291–302Google Scholar
  52. Sayers CM (1990) Stress-induced fluid flow anisotropy in fractured rock. Trans Porous Media 5:287–297Google Scholar
  53. Schlische RW (1992) Structural and stratigraphic development of the Newark extensional basin, eastern North America: evidence for the growth of the basin and its bounding structures. Geol Soc Am Bull 104:1246–1263CrossRefGoogle Scholar
  54. Seeber L, Armbruster JG, Kim WY, Barstow N, Scharnberger C (1998) The 1994 Cacoosing Valley earthquakes near Reading Pennsylvania: a shallow rupture triggered by quarry unloading. J Geophys Res 103:24505–24521Google Scholar
  55. Simpson G, Guéguen Y, Schneider F (2001) Permeability enhancement due to micro-crack dilatancy in the damage regime. J Geophys Res 106:3999–4016Google Scholar
  56. Stone JR, Barlow PM, Starn JJ (1996) Geohydrology and conceptual model of a groundwater flow system near a Superfund site in Cheshire, Connecticut. US Geological Survey Open-File Rep 96-162Google Scholar
  57. Terzaghi R (1965) Sources of error in joint surveys. Geotechnique 15:287–304Google Scholar
  58. Vecchioli J, Carswell LD, Kasabach HF (1969) Occurrence and movement of ground water in the Brunswick Shale at a site near Trenton, New Jersey. US Geological Survey Professional Paper 650-B, B154-B157Google Scholar
  59. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of the cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024Google Scholar
  60. Zoback ML, Zoback MD (1989) Tectonic stress field of the conterminous United States. In: Parker LC, Mooney WD (eds) Geophysical framework of North America. Mem Geol Soc Am 172:523–539Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.US Geological SurveyDenverUSA

Personalised recommendations