Evaluation of the Brazilian regional development funds

A spatial panel data analysis by typology
  • Guilherme Mendes Resende
  • Diego Firmino Costa da Silva
  • Luís Abel da Silva Filho
Original Paper
  • 1 Downloads

Abstract

This paper seeks to evaluate the relationship between the Brazilian regional development funds and GDP per capita growth on two spatial scales (municipalities and micro-regions) between 1999 and 2011. In addition to the multi-scalar approach, this work brings to the available literature three contributions: (i) the study of a longer period (1999–2011), compared to the previous literature; (ii) the possibility of spatial interaction between the geographical units, which has the advantage of allowing an analysis of the direct and indirect effects (spillover effects); and (iii) the consideration of heterogeneity institutionalized by the National Policy for Regional Development (PNDR) through the typology defined by this policy. The results from the non-spatial panel fixed effects models show that resources allocated to the Dynamic and Low-Income typologies have positive impact on the GDP per capita growth for both spatial scales (municipal and micro-regional levels). Moreover, when spatial dependence is allowed, the results indicate that municipalities and micro-regions in the Dynamic and Low-Income typologies show positive direct and indirect marginal effects for the regional development fund variable on the GDP per capita growth. Furthermore, this paper shows that the regional fund indirect effects (spatial spillovers) are higher than the direct effects. In this sense, the results discussed in this paper raise some policy issues. For instance, regional fund investments should at least consider that some of the effects might spill over into the neighboring municipalities. For this reason, coordinated allocation of these regional development funds could be more successful than isolated actions.

Keywords

Impact evaluation Regional development policy Regional funds Spatial spillovers Brazil 

JEL Classification

C52 R58 

References

  1. Ávila RP, Monastério LM (2008) O MAUP e a análise espacial: um estudo de caso para o Rio Grande do Sul. Anal Econ 26:239–265Google Scholar
  2. Baltagi BH, Song SH, Koh W, (2003) Testing panel data regression models with spatial error correlation. J Econometrics 117(1):123–150CrossRefGoogle Scholar
  3. Barro RJ et al (1991) Convergence across states and regions. Brookings Pap Econ Act 1:107–182CrossRefGoogle Scholar
  4. Briant A, Combes PP, Lafourcade M (2010) Dots to boxes: do the size and shape of spatial units jeopardize economic geography estimations? J Urban Econ 67:287–302CrossRefGoogle Scholar
  5. Cheshire P, Hay DG (1989) Urban problems in Western Europe: an economic analysis. Unwin Hyman, LondonGoogle Scholar
  6. Dall’erba S, Fang F (2017) A meta-analysis of the estimated impact of structural funds on regional growth. Regional Studies, v. 51Google Scholar
  7. Dall’erba S, Gallo LE (2008) Regional convergence and the impact of European structural funds over 1989–1999: a spatial econometric analysis. Pap Reg Sci 87(2):219–244CrossRefGoogle Scholar
  8. Debarsy N, Ertur C (2011) Testing for spatial autocorrelation in a fixed effects panel data model. Regional science and urban economicsGoogle Scholar
  9. Elhorst JP (2003) Specification and estimation of spatial panel data models. Int Reg Sci Rev 26(3):244–268CrossRefGoogle Scholar
  10. Elhorst JP (2005) Unconditional maximum likelihood estimation of linear and log-linear dynamic models for spatial panels. Geogr Anal 37:85–106CrossRefGoogle Scholar
  11. Elhorst JP (2010) Spatial panel data models. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 377–407CrossRefGoogle Scholar
  12. Elhorst JP (2011) Spatial panel models. Seminars. The University of York, YorkGoogle Scholar
  13. Elhorst JP (2014) Spatial econometrics: from cross-sectional data to spatial panels. Springer, New YorkCrossRefGoogle Scholar
  14. Ertur C, Koch W (2007) Growth, technological interdependence and spatial externalities: theory and evidence. J Appl Econom 22(6):1033–1062CrossRefGoogle Scholar
  15. Ertur, C., Le Gallo, J. (2009). Regional growth and convergence: Heterogeneous reaction versus interaction in spatial econometric approaches. Handbook of regional growth and development theories, 374-388.Google Scholar
  16. Ertur C, Le Gallo J, Baumont C (2006) The european regional convergence process, 1980–1995: do spatial regimes and spatial dependence matter? Int Reg Sci Rev 29(1):3–34CrossRefGoogle Scholar
  17. IBGE—Instituto Brasileiro de Geografia e Estatística (2012) Sistema de contas regionais referência 2010: produto interno bruto dos municípios 1999–2010. IBGE, Brasília (Disponível em: 〈http://goo.gl/8Bd5Bz〉)Google Scholar
  18. Lall SV, Shalizi Z (2003) Location and growth in the Brazilian northeast. J Reg Sci 43:663–681CrossRefGoogle Scholar
  19. Lee LF, Yu J (2010) A spatial dynamic panel data model with both time and individual fixed effects. Econ Theory 26(2010):564–597CrossRefGoogle Scholar
  20. Lesage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  21. Menon C (2012) The bright side of MAUP: defining new measures of industrial agglomeration. Pap Reg Sci 91(1):3–28CrossRefGoogle Scholar
  22. de Oliveira HC, Domingues EP (2005) Considerações sobre o impacto dos Fundos Constitucionais de Financiamento do Norte e do Centro-Oeste na redução da desigualdade regional no Brasil. Anais do XXXIII Encontro Nacional de EconomiaGoogle Scholar
  23. Resende GM (2011) Multiple dimensions of regional economic growth: the Brazilian case, 1991–2000. Pap Reg Sci 90(3):629–662CrossRefGoogle Scholar
  24. Resende GM (2014a) Measuring micro and macro-impacts of regional development policies: the case of the FNE-Industrial loans in Brazil, 2000–2006. Reg Stud 48(4):646–664CrossRefGoogle Scholar
  25. Resende GM (2014b) Avaliação dos impactos econômicos do Fundo Constitucional de Financiamento do Nordeste entre 2004 e 2010. Ipea, Brasília (Texto para Discussão, n. 1918)Google Scholar
  26. Resende GM, Cravo TA (2014) What about regions in regional science? A convergence exercise using different geographic scales of European Union. Econ Bull Access Econ 34(3):1381–1395Google Scholar
  27. Resende GM, Carvalho AXCFF, Sakowski PAM (2012) Evaluating multiple spatial dimensions of economic growth in Brazil using spatial dynamic panel data models, 1970–2000. Encontro Nacional de Economia, 2012, Porto de Galinhas. ANPEC, Porto de GalinhasGoogle Scholar
  28. Sala-i-Martin XX (1996) The classical approach to convergence analysis. Econ J 1996:1019–1036CrossRefGoogle Scholar
  29. Silva AM, Resende GM, Silveira Neto R (2009) Eficácia do gasto público: uma avaliação do FNE, FNO e FCO. Estud Econ (Sao Paulo) 39(1):89–125CrossRefGoogle Scholar
  30. Silva DFC, Elhorst P, Silveira-Neto R (2017) Urban and rural population growth in a spatial panel of municipalities. Reg Stud 51(6):894–908CrossRefGoogle Scholar
  31. Soares R et al (2014) Fondo Constitucional de Financiamiento del Nordeste del Brasil: efectos diferenciados sobre el crecimiento económico de los municípios. Rev Cepal 113(2014):183–201Google Scholar
  32. Soares R, Sousa J, Pereira Neto A (2009) Avaliação de impactos do FNE no emprego, na massa salarial e no salário médio em empreendimentos financiados. Rev Econ Nordeste 40:217–234 (1)Google Scholar
  33. Yamamoto D (2008) Scales of regional income disparities in the USA, 1955–2003. J Econ Geogr 8:79–103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Administrative Council for Economic Defense (CADE)/Brazilian GovernmentBrasíliaBrazil
  2. 2.Department of EconomicsRural Federal University of Pernambuco (Universidade Federal Rural de Pernambuco – UFRPE)RecifeBrazil
  3. 3.Department of EconomicsRegional University of Cariri (Universidade Regional do Cariri – URCA)CratoBrazil

Personalised recommendations