Skip to main content
Log in

Measuring the coefficient of restitution for all six degrees of freedom

  • Brief Communication
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The coefficient of restitution is a cornerstone empirical parameter of any model where energy is dissipated by particle collisions. However, completely determining this parameter experimentally is challenging, as upon collision, a particle’s material properties (such as roughness, sphericity and shape) or minor imperfections, can cause energy to be shifted to other translational or rotational components. When all degrees of freedom are not resolved, these shifts in energy can easily be mistaken for dissipated energy, affecting the derivation of the coefficient of restitution. In the past, these challenges have been highlighted by a large scatter in values of experimental data for the restitution coefficient. In the present study, a novel experimental procedure is presented, determining all six degrees of freedom of a single, spherical, nylon particle, dropped on a glass plate. This study highlights that only by using all six degrees of freedom, can a single reliable and consistent coefficient of restitution be obtained for all cases and between subsequent collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ammi, M., Oger, L., Beladjine, D., Valance, A.: Three-dimensional analysis of the collision process of a bead on a granular packing. Phys. Rev. E 79(2), 021305 (2009)

    Article  ADS  Google Scholar 

  2. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., van Buijtenen, M.S., Kuipers, J.: Energy absorption during compression and impact of dry elastic–plastic spherical granules. Granul. Matter 12(1), 15–47 (2010)

    Article  Google Scholar 

  3. Bizon, C., Shattuck, M., Swift, J., Swinney, H.L.: Transport coefficients for granular media from molecular dynamics simulations. Phys. Rev. E 60(4), 4340 (1999)

    Article  ADS  Google Scholar 

  4. Brach, R.: Friction, restitution, and energy loss in planar collisions. J. Appl. Mech. 51(1), 164–170 (1984)

    Article  ADS  Google Scholar 

  5. Bradley, D., Roth, G.: Natural interaction with virtual objects using vision-based six DOF sphere tracking. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer entertainment technology, pp. 19–26. ACM (2005)

  6. Briggs, L.J.: Methods for measuring the coefficient of restitution and the spin of a ball. US Department of Commerce, National Bureau of Standards (1945)

  7. Campbell, C., Brennen, C.: Chute flows of granular material: some computer simulations. J. Appl. Mech. 52(1), 172–178 (1985)

    Article  ADS  Google Scholar 

  8. Cross, R.: Measurements of the horizontal coefficient of restitution for a superball and a tennis ball. Am. J. Phys. 70(5), 482–489 (2002)

    Article  ADS  Google Scholar 

  9. Cross, R.: Impact behavior of a superball. Am. J. Phys. 83(3), 238–248 (2015)

    Article  ADS  Google Scholar 

  10. Crüger, B., Salikov, V., Heinrich, S., Antonyuk, S., Sutkar, V., Deen, N., Kuipers, J.: Coefficient of restitution for particles impacting on wet surfaces: an improved experimental approach. Particuology 25, 1–9 (2016)

    Article  Google Scholar 

  11. Foerster, S.F., Louge, M.Y., Chang, H., Allia, K.: Measurements of the collision properties of small spheres. Phys. Fluids 6(3), 1108–1115 (1994)

    Article  ADS  Google Scholar 

  12. Garwin, R.L.: Kinematics of an ultraelastic rough ball. Am. J. Phys. 37(1), 88–92 (1969)

    Article  ADS  Google Scholar 

  13. Goldsmith, W.: Impact. Arnold, London (1960)

    MATH  Google Scholar 

  14. Hastie, D.: Experimental measurement of the coefficient of restitution of irregular shaped particles impacting on horizontal surfaces. Chem. Eng. Sci. 101, 828–836 (2013)

    Article  Google Scholar 

  15. Higham, J.E., et al.: Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow. Adv. Water. Resour. 107, 451–459 (2017)

    Article  ADS  Google Scholar 

  16. Higham, J., Brevis, W., Keylock, C.: A rapid non-iterative proper orthogonal decomposition based outlier detection and correction for PIV data. Meas. Sci. Technol. 27(12), 125303 (2016)

    Article  ADS  Google Scholar 

  17. Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  18. Kuo, H., Knight, P., Parker, D., Tsuji, Y., Adams, M., Seville, J.: The influence of DEM simulation parameters on the particle behaviour in a V-mixer. Chem. Eng. Sci. 57(17), 3621–3638 (2002)

    Article  Google Scholar 

  19. Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26(8R), 1230 (1987)

    Article  ADS  Google Scholar 

  20. Lp, Li, Sq, Sun, Li, Sc, Zhang, Qq, Hu, C., Shi, Ss: Coefficient of restitution and kinetic energy loss of rockfall impacts. KSCE J. Civ. Eng. 20(6), 2297–2307 (2016)

    Article  Google Scholar 

  21. Li, T., Guenther, C.: MFIX-DEM simulations of change of volumetric flow in fluidized beds due to chemical reactions. Powder Technol. 220, 70–78 (2012)

    Article  Google Scholar 

  22. Li, T., Zhang, J., Ge, W.: Simple measurement of restitution coefficient of irregular particles. China Particuol. 2(6), 274–275 (2004)

    Article  Google Scholar 

  23. Maas, H., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)

    Article  Google Scholar 

  24. Müller, P., Pöschel, T.: Collision of viscoelastic spheres: compact expressions for the coefficient of normal restitution. Phys. Rev. E 84(021), 302 (2011). https://doi.org/10.1103/PhysRevE.84.021302

    Article  Google Scholar 

  25. Newton, I.: Philosophiae Naturalis Principia Mathematica, vol. 1. Benjamin Motte, London (1687)

    Book  Google Scholar 

  26. Owens, N., Harris, C., Stennett, C.: Hawk-eye tennis system. In: International Conference on Visual Information Engineering, 2003. VIE 2003, pp. 182–185. IET (2003)

  27. Raman, C.: The photographic study of impact at minimal velocities. Phys. Rev. 12(6), 442 (1918)

    Article  ADS  Google Scholar 

  28. Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32(1–4), 508–524 (2005)

    Article  Google Scholar 

  29. Walsh, K.J., Richardson, D.C., Michel, P.: Rotational breakup as the origin of small binary asteroids. Nature 454(7201), 188 (2008)

    Article  ADS  Google Scholar 

  30. Weir, G., Tallon, S.: The coefficient of restitution for normal, low velocity impacts. Chem. Eng. Sci. 60, 3637–3647 (2005)

    Article  Google Scholar 

  31. Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31(3), 255–265 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The first author funding provided by Oakridge Institute for Science and Education. Second author with funding in part through the Engineering and Physical Sciences Research Council, UK (Grant No. R/147129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Higham.

Ethics declarations

Conflict of interest

The authors can confirm there are no conflicts of interest associated to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higham, J.E., Shepley, P. & Shahnam, M. Measuring the coefficient of restitution for all six degrees of freedom. Granular Matter 21, 15 (2019). https://doi.org/10.1007/s10035-019-0871-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0871-0

Keywords

Navigation