Skip to main content
Log in

Discrete element model study into effects of particle shape on backfill response to cyclic loading behind an integral bridge abutment

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The discrete element method, implemented in a modular GPU based framework that supports polyhedral shaped particles (Blaze-DEM), was used to investigate effects of particle shape on backfill response behind integral bridge abutments during temperature-induced displacement cycles. The rate and magnitude of horizontal stress build-up were found to be strongly related to particle sphericity. The stress build-up in particles of high sphericity was gradual and related to densification extending relatively far from the abutment. With increasing angularities, densification was localised near the abutment, but larger and more rapid stress build-up occurred, supported by particle reorientation and interlock developing further away.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Clayton, C.R.I., Xu, M., Bloodworth, A.: A laboratory study of the development of earth pressure behind integral bridge abutments. Géotechnique 56, 561–571 (2006). https://doi.org/10.1680/geot.2006.56.8.561

    Article  Google Scholar 

  2. Bloodworth, A.G., Xu, M., Banks, J.R., Clayton, C.R.I.: Predicting the earth on integral bridge abutments. J. Bridg. Eng. 16, 259–266 (2011). https://doi.org/10.1061/(ASCE)BE.1943-5592

    Article  Google Scholar 

  3. Xu, M., Clayton, C.R., Bloodworth, A.G.: The earth pressure behind full-height frame integral abutments supporting granular fill. Can. Geotech. J. 44, 284–298 (2007). https://doi.org/10.1139/t06-122

    Article  Google Scholar 

  4. Biddle, A., Iles, D., Yandzio, E.: Integral steel bridges. Steel Construction Institute, Ascot (1997)

    Google Scholar 

  5. Ng, C., Springman, S., Norrish, A.: Soil–structure interaction of spread-base integral bridge abutments. Soils Found. 38, 145–162 (1998). https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(376)

    Article  Google Scholar 

  6. Collings, D.: Steel concrete composite bridges (2005) https://doi.org/10.1680/sccb.33429

  7. The highways agency. The design of integral bridges. Des. Man. Des. Road Bridg. 1 (2003)

  8. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  9. Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol. 253, 256–265 (2014). https://doi.org/10.1016/j.powtec.2013.11.023

    Article  Google Scholar 

  10. Govender, N., Wilke, D.N., Kok, S., Els, R.: Development of a convex polyhedral discrete element simulation framework for NVIDIA Kepler based GPUs. J. Comput. Appl. Math. 270, 386–400 (2014). https://doi.org/10.1016/j.cam.2013.12.032

    Article  MathSciNet  MATH  Google Scholar 

  11. Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89–111 (2002). https://doi.org/10.1016/S0307-904X(01)00050-6

    Article  MATH  Google Scholar 

  12. Fu, R., Hu, X., Zhou, B.: Discrete element modeling of crushable sands considering realistic particle shape effect. Comput. Geotech. 91, 179–191 (2017). https://doi.org/10.1016/j.compgeo.2017.07.016

    Article  Google Scholar 

  13. Govender, N.: Blaze-DEM: A GPU based large scale 3D discrete element particle transport framework. University of Pretoria (2015)

  14. Govender, N., Wilke, D.N., Pizette, P., Abriak, N.E.: A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Appl. Math. Comput. 319, 318–336 (2018). https://doi.org/10.1016/j.amc.2017.03.037

    Article  Google Scholar 

  15. Govender, N., Wilke, D.N., Kok, S.: Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method. Appl. Math. Comput. 267, 810–829 (2015). https://doi.org/10.1016/j.amc.2014.10.013

    Article  MathSciNet  Google Scholar 

  16. Govender, N., Rajamani, R.K., Kok, S., Wilke, D.N.: Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Miner. Eng. 79, 152–168 (2015). https://doi.org/10.1016/j.mineng.2015.05.010

    Article  Google Scholar 

  17. Siemens Product Lifecycle Management Software Inc. STAR-CCM + (2017)

  18. Skorpen, S., Kearsley, E., Clayton, C., Kruger E.: The initial environmental effects on the design of a 90 m long integral bridge in South Africa. In: FIB Symp. 2016 Performance-Based Approaches Concr. Struct. (2016)

  19. Roeder, C.: Proposed design method for thermal bridge movements. J. Bridg. Eng. 8, 12–19 (2003)

    Article  Google Scholar 

  20. Coetzee, C.J.: Calibration of the discrete element method and the effect of particle shape. Powder Technol. 297, 50–70 (2016). https://doi.org/10.1016/j.powtec.2016.04.003

    Article  Google Scholar 

  21. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43, 250–280 (1935). https://doi.org/10.1086/624298

    Article  ADS  Google Scholar 

  22. Coetzee, C.J.: Review: calibration of the discrete element method. Powder Technol. 310, 104–142 (2017). https://doi.org/10.1016/j.powtec.2017.01.015

    Article  Google Scholar 

  23. Xu, Y., Kafui, K.D., Thornton, C., Lian, G.: Effects of material properties on granular flow in a silo using DEM simulation. Part. Sci. Technol. 20, 109–124 (2002). https://doi.org/10.1080/02726350215338

    Article  Google Scholar 

  24. Chang, Y.L., Chen, T.H., Weng, M.C.: Modeling particle rolling behavior by the modified eccentric circle model of DEM. Rock Mech. Rock Eng. 45, 851–862 (2012). https://doi.org/10.1007/s00603-012-0227-0

    Article  ADS  Google Scholar 

  25. Tu, X., Andrade, J.E.: Criteria for static equilibrium in particulate mechanics computations. Int. J. Numer. Methods Eng. 75, 1581–1606 (2008). https://doi.org/10.1002/nme.2322

    Article  MATH  Google Scholar 

  26. Sandlin, M.: An experimental and numerical study of granular hopper flows. MSc. Georgia Institute of Technology (2013)

  27. Härtl, J., Ooi, J.Y.: Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granul. Matter. 10, 263–271 (2008). https://doi.org/10.1007/s10035-008-0085-3

    Article  Google Scholar 

  28. Govender, N., Wilke, D.N., Kok, S.: Blaze-DEMGPU: modular high performance DEM framework for the GPU architecture. SoftwareX 5, 62–66 (2015). https://doi.org/10.1016/j.softx.2016.04.004

    Article  ADS  Google Scholar 

  29. Kelesoglu, M.K., Springman, S.M.: Analytical and 3D numerical modelling of full-height bridge abutments constructed on pile foundations through soft soils. Comput. Geotech. 38, 934–948 (2011). https://doi.org/10.1016/j.compgeo.2011.07.011

    Article  Google Scholar 

  30. Wilke, D.N., Govender, N., Pizette, P., Abriak, N.E.: Computing with non-convex polyhedra on the GPU. Springer Proc. Phys. 188, 1371–1377 (2017). https://doi.org/10.1007/978-981-10-1926-5_141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Ravjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravjee, S., Jacobsz, S.W., Wilke, D.N. et al. Discrete element model study into effects of particle shape on backfill response to cyclic loading behind an integral bridge abutment. Granular Matter 20, 68 (2018). https://doi.org/10.1007/s10035-018-0840-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0840-z

Keywords

Navigation