Granular Matter

, 20:19 | Cite as

DEM simulations: mixing of dry and wet granular material with different contact angles

Original Paper
  • 40 Downloads

Abstract

In solid mixing the raw materials typically differ at least in one material property, such as particle size, solid density and wetting properties, which in turn influence particle mobility. For example, smaller particles can percolate through the voids of larger ones under the influence of strain and gravity. This may produce fine particle accumulation at the bottom of the mixing vessel which results in undesired, inhomogeneous final products. When wet particles with different wetting properties need to be mixed, heteroagglomeration may occur as another segregation mechanism. We present a new capillary bridge force model to study segregation in moist cohesive mixing processes using DEM. New analytical equations of best fit are derived by solving the Young–Laplace equation and performing a regression analysis, in order to investigate discontinuous mixing processes of dry and moist materials with different particle sizes and different contact angles. Compared to a dry mixing process, mixing efficiency is improved by the addition of a small amount of liquid. While percolating segregation is reduced, heteroagglomerates occur in the wet mixing process.

Keywords

Solids mixing DEM simulation Liquid bridge model Segregation Young–Laplace 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG NI 414/25-1).

References

  1. 1.
    Johanson, J.R.: Particle segregation... and what to do about it. Chem. Eng. 85(11), 183–188 (1978)Google Scholar
  2. 2.
    Williams, J.C.: The segregation of particulate materials. A review. Powder Technol. 15(2), 245–251 (1976).  https://doi.org/10.1016/0032-5910(76)80053-8 ADSCrossRefGoogle Scholar
  3. 3.
    Bridgwater, J.: Fundamental powder mixing mechanisms. Powder Technol. 15(2), 215–236 (1976)CrossRefGoogle Scholar
  4. 4.
    Marinelli, J., Carson, J.W.: Solve solids flow problems in bins, hoppers, and feeders. Chem. Eng. Prog. 88(5), 22–28 (1992)Google Scholar
  5. 5.
    Gögelein, C., Brinkmann, M., Schröter, M., Herminghaus, S.: Controlling the formation of capillary bridges in binary liquid mixtures. Langmuir 26(22), 17184–17189 (2010)CrossRefGoogle Scholar
  6. 6.
    Lian, G., Seville, J.: The capillary bridge between two spheres: New closed-form equations in a two century old problem. Adv. Colloid Interface Sci. 227, 53–62 (2016).  https://doi.org/10.1016/j.cis.2015.11.003 CrossRefGoogle Scholar
  7. 7.
    Johanson, J.R.: Smooth out solids blending problems. Chem. Eng. Prog. 96(4), 21–37 (2000)Google Scholar
  8. 8.
    Hoffmann, T.: Mischen und Befeuchten von Schuttgutern. Universität-Gesamthochschule-Paderborn (1995)Google Scholar
  9. 9.
    Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  10. 10.
    Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992).  https://doi.org/10.1016/0032-5910(92)88030-L CrossRefGoogle Scholar
  11. 11.
    Mikami, T., Kamiya, H., Horio, M.: Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 53(10), 1927–1940 (1998).  https://doi.org/10.1016/S0009-2509(97)00325-4 CrossRefGoogle Scholar
  12. 12.
    Remy, B., Khinast, J.G., Glasser, B.J.: Wet granular flows in a bladed mixer: experiments and simulations of monodisperse spheres. AIChE J. 58(11), 3354–3369 (2012)CrossRefGoogle Scholar
  13. 13.
    Soulie, F., Cherblanc, F., El Youssoufi, M.S., Saix, C.: Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Methods Geomech. 30(3), 213–228 (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Segregation of cohesive granular materials during discharge from a rectangular hopper. Granul. Matter 12(2), 193–200 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Butt, H.-J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146(1), 48–60 (2009)CrossRefGoogle Scholar
  16. 16.
    Derjaguin, B.: Untersuchungen über die Reibung und Adhäsion, IV. Kolloid-Zeitschrift 69(2), 155–164 (1934).  https://doi.org/10.1007/bf01433225 CrossRefGoogle Scholar
  17. 17.
    Alchikh-Sulaiman, B., Ein-Mozaffari, F., Lohi, A.: Evaluation of poly-disperse solid particles mixing in a slant cone mixer using discrete element method. Chem. Eng. Res. Des. 96, 196–213 (2015).  https://doi.org/10.1016/j.cherd.2015.02.020 CrossRefGoogle Scholar
  18. 18.
    Stieß, M., Ripperger, S.: Mechanische Verfahrenstechnik-Partikeltechnologie 1, vol. 1. Springer, Berlin (2009)Google Scholar
  19. 19.
    Fisher, R.A.: On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16(03), 492–505 (1926).  https://doi.org/10.1017/S0021859600007838 CrossRefGoogle Scholar
  20. 20.
    Hotta, K., Takeda, K., Iinoya, K.: The capillary binding force of a liquid bridge. Powder Technol. 10(4–5), 231–242 (1974).  https://doi.org/10.1016/0032-5910(74)85047-3 CrossRefGoogle Scholar
  21. 21.
    Schubert, H.: Kapillarität in porösen Feststoffsystemen. Springer, Berlin (1982)CrossRefGoogle Scholar
  22. 22.
    Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161(1), 138–147 (1993).  https://doi.org/10.1006/jcis.1993.1452 ADSCrossRefGoogle Scholar
  23. 23.
    Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.: Capillary bridges between two spherical bodies. Langmuir 16(24), 9396–9405 (2000)CrossRefGoogle Scholar
  24. 24.
    Shi, D., McCarthy, J.J.: Numerical simulation of liquid transfer between particles. Powder Technol. 184(1), 64–75 (2008).  https://doi.org/10.1016/j.powtec.2007.08.011 CrossRefGoogle Scholar
  25. 25.
    Pitois, O., Moucheront, P., Chateau, X.: Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231(1), 26–31 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    McCarthy, J.J.: Micro-modeling of cohesive mixing processes. Powder Technol. 138(1), 63–67 (2003).  https://doi.org/10.1016/j.powtec.2003.08.042 CrossRefGoogle Scholar
  27. 27.
    Chaudhuri, B., Mehrotra, A., Muzzio, F.J., Tomassone, M.S.: Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 165(2), 105–114 (2006).  https://doi.org/10.1016/j.powtec.2006.04.001 CrossRefGoogle Scholar
  28. 28.
    Nakamura, H., Fujii, H., Watano, S.: Scale-up of high shear mixer-granulator based on discrete element analysis. Powder Technol. 236, 149–156 (2013).  https://doi.org/10.1016/j.powtec.2012.03.009 CrossRefGoogle Scholar
  29. 29.
    Mani, R., Kadau, D., Or, D., Herrmann, H.J.: Fluid depletion in shear bands. Phys. Rev. Lett. 109(24), 248001 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Mani, R., Kadau, D., Herrmann, H.J.: Liquid migration in sheared unsaturated granular media. Granul. Matter 15(4), 447–454 (2013).  https://doi.org/10.1007/s10035-012-0387-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Mechanical Process Engineering and MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations