Skip to main content
Log in

Discrete modeling of sand–tire mixture considering grain-scale deformability

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Mixing sand or soil with small pieces of tire is common practice in civil engineering applications. Although the properties of the soil are changed, it is environmentally friendly and sometimes economical. Nevertheless, the mechanical behavior of such mixtures is still not fully understood and more numerical investigations are required. This paper presents a novel approach for the modeling of sand–tire mixtures based on the discrete element method. The sand grains are represented by rigid agglomerates whereas the tire grains are represented by deformable agglomerates. The approach considers both grain shape and deformability. The micromechanical parameters of the contact law are calibrated based on experimental results from the literature. The effects of tire content and confining pressure on the stress–strain response are investigated in detail by performing numerical triaxial compression tests. The main results indicate that both strength and stiffness of the samples decrease with increasing tire content. A tire contact of 40% is identified as the boundary between rubber-like and sand-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Scott, E.: End-of-life Tyre Report 2015. p. 36. European Tyre & Rubber Manufactures Association (2016)

  2. Garga, V.K., O’Shaughnessy, V.: Tire-reinforced earthfill. Part 1: construction of a test fill, performance, and retaining wall design. Can. Geotech. J. 37(1), 75–96 (2000). https://doi.org/10.1139/t99-084

    Article  Google Scholar 

  3. Tweedie, J.J., Humphrey, D.N., Sandford, T.C.: Tire chips as lightweight backfill for retaining walls-Phase II. University of Maine, Orono. In. Rep. to New England Transportation Consortium (1998)

  4. Zimmerman, P.S.: Compressibility, hydraulic conductivity, and soil infiltration testing of tire shreds and field testing of a shredded tire horizontal drain (1997)

  5. Foose, G., Benson, C., Bosscher, P.: Sand reinforced with shredded waste tires. J. Geotech. Eng. 122(9), 760–767 (1996). https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760)

  6. Zornberg, J.G., Cabral, A.R., Viratjandr, C.: Behaviour of tire shred–sand mixtures. Can. Geotech. J. 41(2), 227–241 (2004). https://doi.org/10.1139/t03-086

    Article  Google Scholar 

  7. Ghazavi, M., Sakhi, M.: Optimization of aspect ratio of waste tire shreds in sand–shred mixtures using CBR tests. Geotech. Test. J. 28(6), 564–569 (2005). https://doi.org/10.1520/GTJ12126

    Google Scholar 

  8. Mashiri, M.S., Vinod, J.S., Sheikh, M.N., Tsang, H.-H.: Shear strength and dilatancy behaviour of sand–tyre chip mixtures. Soils Found. (2015). https://doi.org/10.1016/j.sandf.2015.04.004

  9. Lee, J., Dodds, J., Santamarina, J.: Behavior of rigid-soft particle mixtures. J. Mater. Civ. Eng. 19(2), 179–184 (2007). https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)

    Article  Google Scholar 

  10. Rao, G.V., Dutta, R.K.: Compressibility and strength behaviour of sand-tyre chip mixtures. Geotech. Geol. Eng. 24(3), 711–724 (2006). https://doi.org/10.1007/s10706-004-4006-x

    Article  Google Scholar 

  11. Nakhaei, A., Marandi, S.M., Sani Kermani, S., Bagheripour, M.H.: Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn. Earthq. Eng. 43, 124–132 (2012). https://doi.org/10.1016/j.soildyn.2012.07.026

    Article  Google Scholar 

  12. Ahmed, I.: Laboratory study on properties of rubber-soils. Final report (1993)

  13. Attom, M.: The use of shredded waste tires to improve the geotechnical engineering properties of sands. Environ. Geol. 49(4), 497–503 (2006). https://doi.org/10.1007/s00254-005-0003-5

    Article  ADS  Google Scholar 

  14. Neaz Sheikh, M., Mashiri, M., Vinod, J., Tsang, H.: Shear and compressibility behavior of sand–tire crumb mixtures. J. Mater. Civ. Eng. 25(10), 1366–1374 (2012). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000696

    Article  Google Scholar 

  15. Ghazavi, M., Sakhi, M.: Influence of optimized tire shreds on shear strength parameters of sand. Int. J. Geomech. 5(1), 58–65 (2005). https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(58)

    Article  Google Scholar 

  16. Hataf, N., Rahimi, M.M.: Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds. Constr. Build. Mater. 20(10), 910–916 (2006). https://doi.org/10.1016/j.conbuildmat.2005.06.019

    Article  Google Scholar 

  17. Bałachowski, L., Gotteland, P.: Characteristics of tyre chips-sand mixtures from triaxial tests. Arch. Hydro-Eng. Environ. Mech. 54(1), 25–36 (2007)

    Google Scholar 

  18. Kaneko, T., Orense, R.P., Hyodo, M., Yoshimoto, N.: Seismic response characteristics of saturated sand deposits mixed with tire chips. J. Geotech. Geoenviron. Eng. 139(4), 633–643 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000752

    Article  Google Scholar 

  19. Lee, J.H., Salgado, R., Bernal, A., Lovell, C.W.: Shredded tires and rubber-sand as lightweight backfill. J. Geotech. Geoenviron. Eng. 125(2), 132–141 (1999). https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132))

  20. Valdes, J.R., Evans, T.M.: Sand-rubber mixtures: experiments and numerical simulations. Can. Geotech. J. 45(4), 588–595 (2008). https://doi.org/10.1139/T08-002

    Article  Google Scholar 

  21. Šmilauer, V. et al.: Yade documentation, 2nd edn. (2015). https://doi.org/10.5281/zenodo.34073

  22. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  23. Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012). https://doi.org/10.1007/s10035-012-0352-1

    Article  Google Scholar 

  24. Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Muhlhaus, H.-B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013). https://doi.org/10.1007/s10035-013-0423-y

    Article  Google Scholar 

  25. Suhr, B., Six, K.: On the effect of stress dependent interparticle friction in direct shear tests. Powder Technol. 294, 211–220 (2016). https://doi.org/10.1016/j.powtec.2016.02.029

    Article  Google Scholar 

  26. Scholtès, L., Chareyre, B., Nicot, F., Darve, F.: Micromechanics of granular materials with capillary effects. Int. J. Eng. Sci. 47(1), 64–75 (2009). https://doi.org/10.1016/j.ijengsci.2008.07.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Gladkyy, A., Schwarze, R.: Comparison of different capillary bridge models for application in the discrete element method. Granul. Matter 16(6), 911–920 (2014). https://doi.org/10.1007/s10035-014-0527-z

    Article  Google Scholar 

  28. Wan, R., Khosravani, S., Pouragha, M.: Micromechanical analysis of force transport in wet granular soils. Vadose Zone J. (2014). https://doi.org/10.2136/vzj2013.06.0113

    Google Scholar 

  29. Marzougui, D., Chareyre, B., Chauchat, J.: Microscopic origins of shear stress in dense fluid–grain mixtures. Granul. Matter 17(3), 297–309 (2015). https://doi.org/10.1007/s10035-015-0560-6

    Article  Google Scholar 

  30. Duriez, J., Wan, R.: Subtleties in discrete-element modelling of wet granular soils. Géotechnique (2016). https://doi.org/10.1680/jgeot.15.P.113

    Google Scholar 

  31. Tran, V.D.H., Meguid, M.A., Chouinard, L.E.: A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions. Geotext. Geomembr. 37, 1–9 (2013). https://doi.org/10.1016/j.geotexmem.2013.01.003

    Article  Google Scholar 

  32. Effeindzourou, A., Chareyre, B., Thoeni, K., Giacomini, A., Kneib, F.: Modelling of deformable structures in the general framework of the discrete element method. Geotext. Geomembr. 44(2), 143–156 (2016). https://doi.org/10.1016/j.geotexmem.2015.07.015

    Article  Google Scholar 

  33. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. CRC Press, Boca Raton (2011)

    Google Scholar 

  34. Lopera Perez, J.C., Kwok, C.Y., Senetakis, K.: Effect of rubber size on the behaviour of sand-rubber mixtures: a numerical investigation. Comput. Geotech. 80, 199–214 (2016). https://doi.org/10.1016/j.compgeo.2016.07.005

    Article  Google Scholar 

  35. Mahboubi, A., Asadi Zeidabadi, M.: Simulation of Sand–Tire Mixture by Discrete Element Method. In: Li, X., Feng, Y., Mustoe, G. (eds.) Proceedings of the 7th International Conference on Discrete Element Methods, pp. 821–826. Springer Singapore, Singapore (2017)

  36. McDowell, G.R., Li, H.: Discrete element modelling of scaled railway ballast under triaxial conditions. Granul. Matter 18(3), 66 (2016). https://doi.org/10.1007/s10035-016-0663-8

    Article  Google Scholar 

  37. Alaei, E., Mahboubi, A.: A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granul. Matter 14(6), 707–717 (2012). https://doi.org/10.1007/s10035-012-0367-7

    Article  Google Scholar 

  38. Harireche, O., McDowell, G.R.: Discrete element modelling of cyclic loading of crushable aggreates. Granul. Matter 5(3), 147–151 (2003). https://doi.org/10.1007/s10035-003-0143-9

    Article  MATH  Google Scholar 

  39. Lim, W.L., McDowell, G.R.: Discrete element modelling of railway ballast. Granul. Matter 7(1), 19–29 (2005). https://doi.org/10.1007/s10035-004-0189-3

    Article  MATH  Google Scholar 

  40. Kwok, C.Y., Bolton, M.D.: DEM simulations of soil creep due to particle crushing. Géotechnique 63(16), 1365–1376 (2013). https://doi.org/10.1680/geot.11.P.089

    Article  Google Scholar 

  41. Nezamabadi, S., Nguyen, T.H., Delenne, J.-Y., Radjai, F.: Modeling soft granular materials. Granul. Matter 19(1), 8 (2016). https://doi.org/10.1007/s10035-016-0689-y

    Article  Google Scholar 

  42. Stránský, J., Jirásek, M., Šmilauer, V.: Macroscopic elastic properties of particle models. Paper Presented at the Proceedings of the International Conference on Modelling and Simulation 2010, Prague, Czech Republic, 22–25 June 2010

  43. Zheng, J., Hryciw, R.D.: Roundness and sphericity of soil particles in assemblies by computational geometry. J. Comput. Civil Eng. 30(6), 04016021 (2016). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000578

    Article  Google Scholar 

  44. Evans, T.M., Frost, J.D.: Shear Banding and Microstructure Evolution in 2D Numerical Experiments. ASCE-GI GeoDenver 2007, Geotechnical Special Publication No. 173: Advances in Measurement and Modeling of Soil Behavior, Denver, Colo (2007)

  45. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009). https://doi.org/10.1016/j.compgeo.2008.02.003

    Article  Google Scholar 

  46. Beatty, J.: Physical properties of rubber compounds. Mechanics of pneumatic tires, pp. 871–885 (1981)

  47. Youwai, S., Bergado, D.T.: Strength and deformation characteristics of shredded rubber tire–sand mixtures. Can. Geotech. J. 40(2), 254–264 (2003). https://doi.org/10.1139/t02-104

    Article  Google Scholar 

  48. Wu, W., Benda, C., Cauley, R.: Triaxial determination of shear strength of tire chips. J. Geotech. Geoenviron. Eng. 123(5), 479–482 (1997). https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(479)

  49. Ghiassian, H., Poorebrahim, G., Gray, D.H.: Soil reinforcement with recycled carpet wastes. Waste Manag. Res. 22(2), 108–114 (2004)

    Article  Google Scholar 

  50. Lok, T., Yu, H.: Laboratory study on the mechanical behavior of tire chip-sand mixture. In: Pavement Mechanics and Performance, pp. 157–164. American Society of Civil Engineers (2006)

  51. Gotteland, P., Lambert, S., Balachowski, L.: Strength characteristics of tyre chips–sand mixtures. Stud. Geotech. Mech. 27(1–2), 55–66 (2005)

    Google Scholar 

  52. Edincliler, A., Cabalar, A., Cagatay, A., Cevik, A.: Triaxial compression behavior of sand and tire wastes using neural networks. Neural Comput. Appl. 21(3), 441–452 (2012). https://doi.org/10.1007/s00521-010-0430-4

    Article  Google Scholar 

  53. Tajdini, M., Nabizadeh, A., Taherkhani, H., Zartaj, H.: Effect of added waste rubber on the properties and failure mode of kaolinite clay. Int. J. Civ. Eng. (2016). https://doi.org/10.1007/s40999-016-0057-7

    Google Scholar 

  54. Shariatmadari, N., Machado, S.L., Noorzad, A., Karimpour-Fard, M.: Municipal solid waste effective stress analysis. Waste Manag. (Oxford) 29(12), 2918–2930 (2009). https://doi.org/10.1016/j.wasman.2009.07.009

    Article  Google Scholar 

  55. Karimpour-Fard, M., Machado, S.L., Shariatmadari, N., Noorzad, A.: A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Manag. (Oxford) 31(8), 1807–1819 (2011). https://doi.org/10.1016/j.wasman.2011.03.011

    Article  Google Scholar 

  56. Shariatmadari, N., Asadi, M., Karimpour-Fard, M.: Investigation of fiber effect on the mechanical behavior of municipal solid waste by different shearing test apparatuses. Int. J. Environ. Sci. Technol. (2017). https://doi.org/10.1007/s13762-017-1297-z

    Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the financial support of the Ministry of Science, Research and Technology of Iran for subsidizing his research visit at University of Newcastle. In addition, the first author would like to thank Sayed Ali Reza. The authors also thank the University of Newcastle for access to its high performance computing facilities. Finally, the authors would like to thank the reviewers and the editor for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mahboubi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, M., Mahboubi, A. & Thoeni, K. Discrete modeling of sand–tire mixture considering grain-scale deformability. Granular Matter 20, 18 (2018). https://doi.org/10.1007/s10035-018-0791-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0791-4

Keywords

Navigation