Skip to main content
Log in

Snow as a granular material: assessment of a new grain segmentation algorithm

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Rapid deformations in snow are mainly controlled by particle rearrangements and contact interactions. To study this deformation regime, the description of the snow microstructure in terms of grains, which could eventually be handled by discrete element models, is relevant. In practice, microtomography has become a standard method to image the three-dimensional distribution of ice and pores, as a set of binary voxels. Here, we propose a new method to directly identify individual snow grains defined as zones separated by regions of potential mechanical weakness, in the microtomographic images. In general, these grains are not well separated but rather sintered together. Our new method, based on local geometrical criteria, is shown to detect contacts directly inferred from an explicit numerical mechanical experiment. The developed algorithm is tested on snow but is generic and applicable to various geomaterials with a granular-like microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arnaud, L., Gay, M., Barnola, J.-M., Duval, P.: Imaging of firn and bubbly ice in coaxial reflected light : a new technique for the characterization of these porous media. J. Glaciol. 44(147), 326–332 (1998)

    ADS  Google Scholar 

  2. Blackford, J.R.: Sintering and microstructure of ice: a review. J. Phys. D. Appl. Phys. 40(21), R355 (2007). doi:10.1088/0022-3727/40/21/R02

    Article  ADS  Google Scholar 

  3. Borstad, C., McClung, D.M.: Thin-blade penetration resistance and snow strength. J. Glaciol. 57(202), 325–336 (2011). doi:10.3189/002214311796405924

    Article  ADS  Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004). doi:10.1109/TPAMI.2004.60

    Article  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001). doi:10.1109/34.969114

    Article  Google Scholar 

  6. Brzoska, J.-B., Flin, F., Ogawa, N.: Using gaussian curvature for the 3D segmentation of snow grains from microtomographic data. In: Kuhs, W. (ed.) Physics and Chemistry of Ice, vol. 1, pp. 125–132. The Royal Society of Chemistry (2007). doi:10.1039/9781847557773

  7. Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Roscoat, S.R., Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Res. Lett. 38(23), 23501 (2011). doi:10.1029/2011GL049234

    Article  ADS  Google Scholar 

  8. Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy. Cryosphere 6(5), 939–951 (2012). doi:10.5194/tc-6-939-2012

    Article  ADS  Google Scholar 

  9. Casassa, G., Narita, H., Maeno, N.: Measurements of friction coefficients of snow blocks. Ann. Glaciol. 13(40), 40–44 (1989)

    ADS  Google Scholar 

  10. Colbeck, S.: A Review of Sintering in Seasonal Snow, CRREL Rep., 97–10 (1997)

  11. Colbeck, S.C.: Sintering of unequal grains. J. Appl. Phys. 89(8), 4612 (2001). doi:10.1063/1.1356427

    Article  ADS  Google Scholar 

  12. Coléou, C., Lesaffre, B., Brzoska, J.-B., Ludwig, W., Boller, E.: Three-dimensional snow images by X-ray microtomography. Ann. Glaciol. 32(1), 75–81 (2001). doi:10.3189/172756401781819418

  13. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979). doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  14. Fassnacht, S.: Snow density. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds.) Encyclopedia of Snow, Ice and Glaciers, p. 1045. Springer, Dordrecht (2011)

  15. Fierz, C., Durand, R., Etchevers, Y., Greene, P., McClung, D.M., Nishimura, K,, Satyawali, P.K., Sokratov, S.A.: The international classification for seasonal snow on the ground, Tech. rep., IHP-VII Technical Documents in Hydrology N83, IACS Contribution N1, UNESCO-IHP, Paris (2009)

  16. Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C., Pieritz, R.A.: Full three-dimensional modelling of curvature-dependent snow metamorphism: first results and comparison with experimental tomographic data. J. Phys. D Appl. Phys. 36(10A), A49–A54 (2003). doi:10.1088/0022-3727/36/10A/310

    Article  ADS  Google Scholar 

  17. Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C., Pieritz, R.A.: Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. Ann. Glaciol. 38(1), 39–44 (2004). doi:10.3189/172756404781814942

    Article  ADS  Google Scholar 

  18. Hagenmuller, P., Chambon, G., Lesaffre, B., Flin, F., Naaim, M.: Energy-based binary segmentation of snow microtomographic images. J. Glaciol. 59(217), 859–873 (2013). doi:10.3189/2013JoG13J035

    Article  ADS  Google Scholar 

  19. Hagenmuller, P., Theile, T., Schneebeli, M.: Numerical simulation of microstructural damage and tensile strength of snow. Geophys. Res. Lett. 41(1), 86–89 (2014). doi:10.1002/2013GL058078

    Article  ADS  Google Scholar 

  20. Johnson, J.B., Hopkins, M.A.: Identifying microstructural deformation mechanisms in snow using discrete-element modeling. J. Glaciol. 51(174), 432–442 (2005). doi:10.3189/172756505781829188

    Article  ADS  Google Scholar 

  21. Johnson, J.B.: Snow deformation. In: Singh, V.P., Singh, P., Haritashya, U.K. (eds.) Encyclopedia of Snow, Ice and Glaciers, pp. 1041–1045, Springer, Dordrecht, The Netherlands (2011). doi:10.1007/978-90-481-2642-2

  22. Kaempfer, T.U., Schneebeli, M., Sokratov, S.A.: A microstructural approach to model heat transfer in snow. Geophys. Res. Let. 32(21), 1–5 (2005). doi:10.1029/2005GL023873

    Article  Google Scholar 

  23. Keeler, C.M., Weeks, W.F.: Investigations into the mechanical properties of alpine snow-packs. J. Glaciol. 7, 253–271 (1968)

  24. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004). doi:10.1109/TPAMI.2004.1262177

    Article  Google Scholar 

  25. Kry, P.: Quantitative stereological analysis of grain bonds in snow. J. Glaciol. 14(72), 467–477 (1975)

    ADS  Google Scholar 

  26. Kry, P.: The relationship between the visco-elastic and structural properties of fine-grained snow. J. Glaciol. 14(72), 479–500 (1975)

  27. Kubo, M., Seto, K., Muramoto, K., Fujiyoshi, Y., Shinoda, T., Ohigashi, T.: Shape classification of snow particle into snowflake and graupel using image processing. In: ICCAS-SICE, pp. 5451–5456 (2009)

  28. Legagneux, L., Domine, F.: A mean field model of the decrease of the specific surface area of dry snow during isothermal metamorphism. J. Geophys. Res. 110(F4), F04,011 (2005). doi:10.1029/2004JF000181

    Google Scholar 

  29. Liang, Z., Ioannidis, M.A., Chatzis, I.: Geometric and topological analysis of three-dimensional porous media: pore space partitioning based on morphological skeletonization. J. Colloid Interf. Sci. 221(1), 13–24 (2000). doi:10.1006/jcis.1999.6559

    Article  Google Scholar 

  30. Löwe, H., Riche, F., Schneebeli, M.: A general treatment of snow microstructure exemplified by an improved relation for thermal conductivity. Cryosphere 7(5), 1473–1480 (2013). doi:10.5194/tc-7-1473-2013

    Article  ADS  Google Scholar 

  31. Maurer Jr, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003). doi:10.1109/TPAMI.2003.1177156

    Article  Google Scholar 

  32. Mellor, M.: A review of basic snow mechanics. In: IAHS Publication, vol. 114, pp. 251–291, International Association of Scientific Hydrology (1975)

  33. Ogawa, N., Flin, F., Brzoska, J.-B.: Representation of two curvatures of surface and its application to snow physics. Mem. Hokkaido Inst. Technol. 34, 81–87 (2006)

    Google Scholar 

  34. Prinet, V., Monga, O., Cong, G., Loa, X.S., Ma, S.: Thin network extraction in 3D images: application to medical angiograms. In: Proceedings of the International Conference on Pattern Recognition (ICPR ’96), vol. 3, pp. 386–390 (1996). doi:10.1109/ICPR.1996.546975

  35. Radjai, F., Dubois, F.: Discrete Numerical Modeling of Granular Materials, p 496, Wiley-ISTE (2011)

  36. Riche, F., Montagnat, M., Schneebeli, M.: Evolution of crystal orientation in snow during temperature gradient metamorphism. J. Glaciol. 59(213), 47–55 (2013). doi:10.3189/2013JoG12J116

    Article  ADS  Google Scholar 

  37. Schneebeli, M.: The importance of the microstructure of snow in nature and design. In: Brebbia, C.A., Sucharov, L.J., Pascolo, P. (eds) Nature and Design: Comparing Design in Nature with Science and Engineering vol. 3, pp. 87–93 (2002)

  38. Schneebeli, M.: Numerical simulation of elastic stress in the microstructure of snow. Ann. Glaciol. 38(1), 339–342 (2004). doi:10.3189/172756404781815284

    Article  ADS  MathSciNet  Google Scholar 

  39. Schulson, E.M., Duval, P.: Creep and Fracture of ice. Cambridge University Press (2009). doi:10.1017/CBO9780511581397

  40. Schweizer, J., Jamieson, J.B., Schneebeli, M.: Snow avalanche formation. Rev. Geophys. 41(4), 1016–1041 (2003). doi:10.1029/2002RG000123

    Article  ADS  Google Scholar 

  41. Seta, E., Kamegawa, T., Nakajima, Y.: Prediction of snow/tire interaction using explicit FEM and FVM. Tire Sci. Technol. 31(3), 173–188 (2003). doi:10.2346/1.2135267

    Article  Google Scholar 

  42. Shapiro, L.H., Johnson, J.B., Sturm, M., Blaisdell, G.L.: Snow Mechanics—Review of the State of Knowledge and Applications, CRREL Report 97-3 (1997)

  43. Soille, P.: Morphological Image Analysis: Principles and Applications, 2 ed., Springer-Verlag New York Inc, Secaucus, NJ, USA (2003). doi:10.1007/978-3-662-05088-0

  44. Srivastava, P.K., Mahajan, P., Satyawali, P.K., Kumar, V.: Observation of temperature gradient metamorphism in snow by X-ray computed microtomography: measurement of microstructure parameters and simulation of linear elastic properties. Ann. Glaciol. 50(54), 73–82 (2010). doi:10.3189/172756410791386571

    Article  ADS  Google Scholar 

  45. St. Lawrence, W.: The acoustic emission response of snow. J. Glaciol. 26(94), 209–216 (1980)

    MathSciNet  Google Scholar 

  46. Theile, T., Schneebeli, M.: Algorithm to decompose three-dimensional complex structures at the necks: tested on snow structures. IET Image Process. 5(2), 132–140 (2011). doi:10.1049/iet-ipr.2009.0410

    Article  Google Scholar 

  47. Theile, T., Löwe, H., Schneebeli, M.: Simulating creep of snow based on microstructure and the anisotropic deformation of ice. Acta. Mater. 59(18), 7104–7113 (2011). doi:10.1016/j.actamat.2011.07.065

    Article  Google Scholar 

  48. Van den Boomgaard, R., Van der Weij, R.: Gaussian convolutions numerical approximations based on interpolation. In: Kerckhove, M. (ed.) Scale-Space and Morphology in Computer Vision: Third International Conference, pp. 205–214. Springer, Berlin (2001)

    Chapter  Google Scholar 

  49. Vetter, R., Sigg, S., Singer, H.M., Kadau, D., Herrmann, H.J., Schneebeli, M.: Simulating isothermal aging of snow. EPL (Europhy. Lett.) 89(2), 26,001 (2010). doi:10.1209/0295-5075/89/26001

  50. Wang, X., Gillibert, L., Flin, F., Coeurjolly, D.: Curvature-driven volumetric segmentation of binary shapes: an application to snow microstructure analysis. In: ICPR, pp. 742–745. IEEE Computer Society (2012)

  51. Wang, X., Coeurjolly, D., Flin, F.: Digital flow for shape decomposition: application to 3-D microtomographic images of snow. Pattern Recogn. Lett. (2014). doi:10.1016/j.patrec.2014.03.005

  52. Warren, S.: Optical properties of snow. Rev. Geophys. 20(1), 67–89 (1982). doi:10.1029/RG020i001p00067

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by VOR (Tomo_FL project) and the European Feder Fund (projects Interreg Alcotra MAP3, RiskNat). We thank B. Lesaffre and N. Calonne for data acquisition, and E. Podolskiy for comments. The authors thank the scientists of the ESRF ID19 beamline (J. Baruchel, E. Boller, W. Ludwig, X. Thibault) and of the 3SR laboratory (P. Charrier, J. Desrues, S. Rolland du Roscoat), where the 3D images have been obtained. Irstea and CNRM-GAME/CEN are part of Labex OSUG@2020 (Investissements d’Avenir-Grant Agreement ANR-10-LABX-0056) and Irstea is member of Labex TEC21 (Investissements d’Avenir—Grant Agreement ANR-11-LABX-0030). The authors thank H. Löwe and an anonymous reviewer for their constructive feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Hagenmuller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagenmuller, P., Chambon, G., Flin, F. et al. Snow as a granular material: assessment of a new grain segmentation algorithm. Granular Matter 16, 421–432 (2014). https://doi.org/10.1007/s10035-014-0503-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0503-7

Keywords

Navigation