Granular Matter

, Volume 14, Issue 4, pp 469–482 | Cite as

Three dimensional fabric evolution of sheared sand

Original Paper

Abstract

Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

Keywords

Sand Particles Fabric Synchrotron micro-tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM (MP4 127 kb)

ESM (MP4 136 kb)

References

  1. 1.
    Al-Shibli, K., Macari, E., Sture, S.: Digital imaging techniques for the assessment of homogeneity of granular materials. Transportation Research-Record No. 1526, pp. 80–91 (1996)Google Scholar
  2. 2.
    Alshibli K.A., Alramahi B.A.: Microscopic evaluation of strain distribution in granular materials during shear. J. Geotech. Geoenviron. Eng. 132(1), 483–494 (2006)CrossRefGoogle Scholar
  3. 3.
    Anandarajah A.: Sliding and rolling constitutive theory for granular materials. J. Eng. Mech. 13(6), 665–680 (2004)CrossRefGoogle Scholar
  4. 4.
    Anandarajah A., Kuganenthira N.: Some aspects of fabric anisotropy of soil. Geotechnique 45(1), 69–81 (1995)CrossRefGoogle Scholar
  5. 5.
    Arthur J.R.F., Dunstan T.: Radiography measurements of particle packing. Nature 223(2), 464–468 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Arthur J.R.F., Dunstan T.: Radiological techniques developed to describe particle packing. Powder Technol. 3, 195–207 (1970)CrossRefGoogle Scholar
  7. 7.
    Aste T.: Variations around disordered close packing. J. Phys. Condens. Matter 17, S2361–S2390 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Aste T., Saadatfar M., Sakellariou A., Senden T.J.: Investigating the geometrical structure of disordered sphere packings. Phys. A 339, 16–23 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aste T., Saadatfar M., Senden T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061301 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)CrossRefGoogle Scholar
  11. 11.
    Batiste S.N., Alshibli K.A., Sture S., Lankton M.: Shear band characterization of triaxial sand specimens using computed tomography. Geotech. Test. J. 27(6), 568–579 (2004)Google Scholar
  12. 12.
    Chang C.S., Matsushima T., Lee X.: Heterogeneous strain and bonded granular structure change in triaxial specimen studied by computer tomography. J. Eng. Mech. 129(11), 1295–1307 (2003)CrossRefGoogle Scholar
  13. 13.
    Desrues J., Chambon R., Mokni M., Mazerolle F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)CrossRefGoogle Scholar
  14. 14.
    Frost J.D., Kuo C.Y.: Automated determination of the distribution of local void ratio from digital images. Geotech. Test. J. 19(2), 107–117 (1996)CrossRefGoogle Scholar
  15. 15.
    Hasan, A., Alshibli, K., Heinrich, J., Rivers, M., Eng, P.: Visualization of Shear Band in Sand Using Synchrotron Micro-Tomography. In: Proceedings of GeoCongress 2008, Characterization, Monitoring, and Modeling of GeoSystems GSP 179, pp. 1028–1035. ASCE, New Orleans (2008)Google Scholar
  16. 16.
    Kanatani K.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Konagai, K., Rangelow, P.: Real-time observation of dynamic changes in the fabric of granular material structures through Laser-Aided Tomography. In: Proceedings of the 10th European Conference Earthquake Engineering, Vienna, pp. 459–465 (1994)Google Scholar
  18. 18.
    Konagai K., Tamura C., Rangelow P., Matsushima T.: Laser-aided tomography: a tool for visualization of changes in the fabric of granular assemblage. Struct. Eng. Earthq. Eng. 9(3), 193–201 (1992)Google Scholar
  19. 19.
    Matsushima T., Hidetaka S., Yosuke T., Yasuo Y.: Grain rotation versus continuum rotation during shear deformation of granular. Soils Found. 43(4), 95–106 (2003)CrossRefGoogle Scholar
  20. 20.
    Matsushima T., Uesugi K., Nakano T., Tsuchiyama A.: Visualization of grain motion inside a triaxial specimen by micro X-ray CT at SPring-8. In: Desrues, J., Viggiani, G., Besuelle, P. (eds) Advances in X-ray Tomography for Geomaterials, pp. 255–261. ISTE Ltd., London (2006)CrossRefGoogle Scholar
  21. 21.
    Mitchell J., Soga K.: Fundametals of Soil Behavior. 3rd edn. Wiley, Hoboken (2005)Google Scholar
  22. 22.
    Mueth D.M., Debregeas G.F., Karczmar G.S., Eng P.J., Nagel S.R., Jaeger H.M.: Signatures of granular microstructure in dense shear flows. Nature 406, 385–389 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Nemat-Nasser S., Okada N.: Radiographic and microscopic observation of shear bands in granular materials. Geotechnique 51(9), 753–765 (2001)CrossRefGoogle Scholar
  24. 24.
    Ng, T., Aube, D., Altobelli, S.: 3-D MRI Experiment of Granular Material. In: Proceedings of Symposium on Mechanical Deformation and Flow of Particulate Materials, pp. 189–198. Evanston, Illinois (1997)Google Scholar
  25. 25.
    Ng, T., Hu, C., Altobelli, S.: Void Distributions in Samples of a Granular Material. In: Proceedings of GeoShanghai, Site and Geomaterial Characterization, pp. 104–111. Shanghai (2006)Google Scholar
  26. 26.
    Oda M.: The mechanics of fabric changes during compressional deformation of sand. Soils Found. 12(2), 1–18 (1972)CrossRefGoogle Scholar
  27. 27.
    Oda M., Iwashita K., Kakiuchi T.: Importance of Particle Rotation in the Mechanics of Granular Materials. Powder & Grains 97, Balkema, Rotterdam (1997)Google Scholar
  28. 28.
    Oda M., Kazama H.: Microstructure in shear band and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(1), 1–17 (1998)CrossRefGoogle Scholar
  29. 29.
    Oda M., Takemura T., Takahashi M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Geotechnique 54(8), 335–539 (2004)Google Scholar
  30. 30.
    Oh W., Lindquist W.: Image thresholding by indicator Kriging. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 590–602 (1999)CrossRefGoogle Scholar
  31. 31.
    Rowe P.W.: The stress-dilatancy relation for static equilibrium ofan assembly of particles in contact. Proc. R. Soc. A 269, 500–527 (1962)ADSCrossRefGoogle Scholar
  32. 32.
    Shodja H.M., Nezami E.G.: A micromechanical study of rolling and sliding in assemblies of oval granules. Int. J. Numer. Anal. Methods Geomech. 27, 403–424 (2003)MATHCrossRefGoogle Scholar
  33. 33.
    Tordesillas A., Walsh D.C.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002)CrossRefGoogle Scholar
  34. 34.
    Thompson K.E., Willson C.S., Zhang W.: Quantitative computer reconstruction of particulate materials from microtomography images. Powder Technol. 163, 169–182 (2006)CrossRefGoogle Scholar
  35. 35.
    Watkins J.C., Fukushima E.: High-pass bird-cage coil for nuclear magnetic resonance. Rev. Sci. Instrum. 59, 926–929 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Civil and Resource EngineeringThe University of Western AustraliaCrawleyAustralia
  2. 2.Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations