Skip to main content
Log in

Numerical simulation of impact breakage of gun propellant charge

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Fragmentation of gun charge bed is the basic reason of bore burst. Fragmentation dynamics of charge bed is the kernel content of launch safety. In order to simulate fragmentation of propellant bed, there is a need to obtain the packing structure of propellant bed at first. In this paper, the packing process of propellant bed under gravity is simulated, and the close-grained structure of propellant bed is achieved. Then, the 3D discrete element model of propellant bed is presented and the numerical analysis code, which can simulate impact fragmentation behavior of propellant grains, is developed. The fragmentation process of propellant bed under an impact load is calculated by the code, and the entire failure process of propellant grains is presented. Furthermore, the results obtained from simulations are in acceptable agreements with experiment observations, which indicates the accuracy of the computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rui X.T., Yun L.F., Wang G.P. et al.: Direction to Launch Safety of Ammunition. National Defense Industry Press, Beijing (2009)

    Google Scholar 

  2. D’Addetta G.A., Kun F., Ramm E.: On the application of a discrete mode to the fracture process of cohesive granular materials. Granul. Matter 4(2), 77–90 (2002). doi:10.1007/s10035-002-0103-9

    Article  MATH  Google Scholar 

  3. Cundall P.A.: A computer model for simulating progressive large scale movement in block rock system. Symp ISRM 2, 129–136 (1971)

    Google Scholar 

  4. Harireche O., McDowell G.R.: Discrete element modeling of cyclic loading of crushable aggreates. Granul. Matter 5(13), 147–151 (2003). doi:10.1007/s10035-003-0143-9

    Article  MATH  Google Scholar 

  5. Wittel F.K., Carmona H.A., Kun F. et al.: Mechanisms in impact fragmentation. Int. J. Fract. 154, 105–117 (2008). doi:10.1007/s10704-008-9267-6

    Article  MATH  Google Scholar 

  6. Olivier T., Denis V., Jean-Claude C.: Numerical model of crushing of grains inside two dimensinoal granular materials. Powder Technol. 105(1–3), 190–198 (1999). doi:10.1016/S0032-5910(99)00137-0

    Google Scholar 

  7. Zang M.Y., Lei Z., Wang S.E.: Investigation of impact fracture behavior of automobile laminated glass by 3D discrete element method. Comput. Mech. 41, 73–83 (2007). doi:10.1007/s00466-007-0170-1

    Article  MATH  Google Scholar 

  8. Kun F., Herrmann H.J.: A study of fragmentation processes using a discrete element method. Comput. Methods Appl. Mech. Eng. 138, 3–18 (1996)

    Article  ADS  MATH  Google Scholar 

  9. Kun F., Herrmann H.J.: Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59(3), 2623–2632 (1999)

    Article  ADS  Google Scholar 

  10. Behera B., Kun F., McNamara S., Herrmann H.J.: Fragmentation of a circular disc by impact on a frictionless plate. J. Phys. Condens. Matter 17, 2439 (2005). doi:10.1088/0953-8984/17/24/005

    Article  ADS  Google Scholar 

  11. Carmona H.A., Wittel F.K., Kun F. et al.: Fragmentation process in impact of spheres. Phys. Rev. E77, 051302 (2008). doi:10.1103/PhysRevE.77.051302

    ADS  Google Scholar 

  12. Schinner A.: Fast algorithms for the simulation of polygonal particles. Granul. Matter 2(1), 35–43 (1999)

    Article  Google Scholar 

  13. Eberhard P., Muth B.: Dynamics of poured polyhedra of different shape. Lect. Notes Appl. Comput. Mech. 28, 245–269 (2006)

    Article  MathSciNet  Google Scholar 

  14. Baraff, D.: Dynamics simulation of non-penetration rigid bodies. Cornell University Ithaka, PhD Thesis, 92–175 (1992)

  15. Muth B., Eberhard P., Steinbach O. et al.: Collision detection for complicated polyhedra using the fast multipole method or ray crossing. Arch. Appl. Mech. 77, 503–521 (2007). doi:10.1007/s00419-006-0107-8

    Article  ADS  MATH  Google Scholar 

  16. O’Rourke J.: Computational Geometry in C, 2nd ed. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Allen M.P., Tildesley D.J.: Computer Simulations of Liquids. Clarendon Press, Oxford (1989)

    Google Scholar 

  18. Muth B., Muller M.K., Eberhard P., Luding S.: Contact between many bodies. Mach. Dyn. Probl. 28(1), 101–114 (2004)

    Google Scholar 

  19. Rapaport D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. Wriggers P.: Computational Contact Mechanics. Wiley, Chichester (2002)

    Google Scholar 

  21. Liu K., Gao L.: The application of 3-D discrete element method in solving impact dynamics problems. Acta Mech. Sinica 16(3), 256–261 (2003)

    ADS  Google Scholar 

  22. Shan L., Cheng M., Liu K.X., Liu W.F., Chen S.: Y. New discrete element models for three dimensional impact problems. Chin. Phys. Lett. 26(12), 120202 (2009). doi:10.1088/0256-307X/26/12/120202

    Article  ADS  Google Scholar 

  23. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  24. Schaefer J., Dippel S., Wolf D.: E. Force schemes in simulations of granular materials. J. Phys. I 6(1), 5–20 (1996). doi:10.105/jp1:1996129

    Article  Google Scholar 

  25. Kuwabara G., Kono K.: Restitution coefficient in a collision between two spheres. J. Appl. Phys. 26, 1230–1233 (1987)

    Article  Google Scholar 

  26. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  27. Hong, J.: Study on Granular System Dynamics of Propellant Bed with Press and Fracture. Nanjing University of Science and Technology, PhD Thesis, Nanjing, (2007)

  28. Rui X.T., Liu J., Chen T. et al.: Dynamic analysis on the extrusion and rupture of propellants. Acta Armamentarll 25(6), 679–683 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, SP., Rui, XT., Hong, J. et al. Numerical simulation of impact breakage of gun propellant charge. Granular Matter 13, 611–622 (2011). https://doi.org/10.1007/s10035-011-0276-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0276-1

Keywords

Navigation