Skip to main content
Log in

Exploring the Role of Cryptic Nitrogen Fixers in Terrestrial Ecosystems: A Frontier in Nitrogen Cycling Research

  • 25th Anniversary Paper
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Biological nitrogen fixation represents the largest natural flux of new nitrogen (N) into terrestrial ecosystems, providing a critical N source to support net primary productivity of both natural and agricultural systems. When they are common, symbiotic associations between plants and bacteria can add more than 100 kg N ha−1 y−1 to ecosystems. Yet, these associations are uncommon in many terrestrial ecosystems. In most cases, N inputs derive from more cryptic sources, including mutualistic and/or free-living microorganisms in soil, plant litter, decomposing roots and wood, lichens, insects, and mosses, among others. Unfortunately, large gaps remain in the understanding of cryptic N fixation. We conducted a literature review to explore rates, patterns, and controls of cryptic N fixation in both unmanaged and agricultural ecosystems. Our analysis indicates that, as is common with N fixation, rates are highly variable across most cryptic niches, with N inputs in any particular cryptic niche ranging from near zero to more than 20 kg ha−1 y−1. Such large variation underscores the need for more comprehensive measurements of N fixation by organisms not in symbiotic relationships with vascular plants in terrestrial ecosystems, as well as identifying the factors that govern cryptic N fixation rates. We highlight several challenges, opportunities, and priorities in this important research area, and we propose a conceptual model that posits an interacting hierarchy of biophysical and biogeochemical controls over N fixation that should generate valuable new hypotheses and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aguirre-Garrido JF, Montiel-Lugo D, Hernández-Rodríguez C, Torres-Cortes G, Millán V, Toro N, Martínez-Abarca F, Ramírez-Saad HC. 2012. Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie Van Leeuwenhoek 101:891–904.

    Article  Google Scholar 

  • Antoine ME. 2004. An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist 107:82–87.

    Article  Google Scholar 

  • Antoine ME, McCune B. 2004. Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest. Bryologist 107:63–172.

    Article  Google Scholar 

  • Bal A, Chanway CP. 2012. Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90:891–896.

    Article  CAS  Google Scholar 

  • Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J. 2016. Patterns and controls on nitrogen cycling of biological soil crusts. Weber B, Budel B, Belnap J (editors) Biological soil crusts: an organizing principle in drylands. Springer:Cham pp257–285

  • Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO. 2009. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience 2:42–45.

    Article  CAS  Google Scholar 

  • Bar-Schmuel N, Behar A, Segoli M. 2019. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Science 27:392–403.

    Article  Google Scholar 

  • Batterman SA, Wurzburger N, Hedin LO. 2013a. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: A test in Inga punctata. Journal of Ecology 101:1400–1408.

    Article  CAS  Google Scholar 

  • Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS. 2013b. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227.

    Article  CAS  Google Scholar 

  • Bellenger JP, Xu Y, Zhang X, Morel FMM, Kraepiel ML. 2014. Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils. Soil Biology and Biochemistry 69:413–420.

    Article  CAS  Google Scholar 

  • Belnap J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35:128–135.

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL. 2003. Biological soil crusts: structure, function, and management. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Benner JW, Vitousek PM. 2012. Cyanolichens: A link between the phosphorus and nitrogen cycles in a Hawaiian montane forest. Journal of Tropical Ecology 28:73–81.

    Article  Google Scholar 

  • Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM. 2007. Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39:400–405.

    Article  Google Scholar 

  • Benoist A, Houle D, Bradley RL, Bellenger JP. 2022. Evaluation of biological nitrogen fixation in coarse woody debris from Eastern Canadian boreal forests. Soil Biology and Biochemistry 165:108531.

    Article  CAS  Google Scholar 

  • Binkley D, Son Y, Valentine DW. 2000. Do forests receive occult inputs of nitrogen? Ecosystems 3:321–331.

    Article  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V. 2003. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications. Plant and Soil 252:139–149.

    Article  CAS  Google Scholar 

  • Bonnet S, Berthelot H, Turk-Kubo K, Cornet-Barthaux V, Fawcett S, Berman-Frank I, Barani A, Grégori G, Dekaezemacker J, Benavides M, Capone DG. 2016. Diazotroph derived nitrogen supports diatom growth in the South West Pacific: A quantitative study using nanoSIMS. Limnology and Oceanography 61:1549–1562.

    Article  Google Scholar 

  • Braghiere RK, Fisher JB, Allen K, Brzostek E, Shi M, Yang X, Ricciutto DM, Fisher RA, Zhu Q, Phillips RP. 2022. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. Journal of Advances in modeling earth systems 14:e2022MS0003204.

    Article  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC. 1973. Nitrogen-fixation in termites. Nature 244:577–579.

    Article  CAS  Google Scholar 

  • Carrell AA, Frank AC. 2014. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in Microbiology 5:1–11.

    Article  Google Scholar 

  • Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kosta JE, Iversen CM, Hanson PJ, Weston DJ. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology 25:2993–3004.

    Article  Google Scholar 

  • Chan FM, Pace ML, Howarth RW, Marino RM. 2004. Bloom formation in heterocystic nitrogen-fixing cyanobacteria: The dependence on colony size and zooplankton grazing. Limnology and Oceanography 49:2171–2178.

    Article  Google Scholar 

  • Chen H, Hicks W. 2003. High asymbiotic N2 fixation rates in woody roots after six years of decomposition: controls and implications. Basic and Applied Ecology 4:479–486.

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, et al. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles 13:623–645.

    Article  CAS  Google Scholar 

  • Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, et al. 2013. Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America 110:12733–12777.

    Article  CAS  Google Scholar 

  • Cobo-Díaz JF, Fernández-González AJ, Villadas PJ, Robles AB, Toro N, Fernández-López M. 2015. Metagenomic Assessment of the Potential Microbial Nitrogen Pathways in the Rhizosphere of a Mediterranean Forest After a Wildfire. Microbial Ecology 69:895–904.

    Article  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. 2007. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany 99:987–1001.

    Article  CAS  Google Scholar 

  • Crews TE, Kurina LM, Vitousek PM. 2001. Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii. Biogeochemistry 52:259–279.

    Article  CAS  Google Scholar 

  • Cusack DF, Silver W, McDowell WH. 2009. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems 12:1299–1315.

    Article  CAS  Google Scholar 

  • Darnajoux R, Magain N, Renaudin M, Lutzoni F, Bellenger J-P, Zhang X. 2019. Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proceedings of the National Academy of Sciences 116:24682–24688.

    Article  CAS  Google Scholar 

  • Davies-Barnard T, Friedlingstein P. 2020. The Global Distribution of Biological Nitrogen Fixation in Terrestrial Natural Ecosystems. Global Biogeochemical Cycles 34:1–17.

    Article  Google Scholar 

  • Davis SC, Parton WJ, Dohleman FG, Smith CM, del Grosso S, Kent AD, DeLucia EH. 2010. Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem. Ecosystems 13:144–156.

    Article  CAS  Google Scholar 

  • Dawson JO. 1983. Dinitrogen fixation in forested ecosystems. Canadian Journal of Microbiology 29:979–992.

    Article  CAS  Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC. 2008. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181–1181.

    Article  CAS  Google Scholar 

  • Denison WC, Roose MK, Rhoades FM, Caldwell B, Pike LH. 1979. Lobaria oregana, a nitrogen-fixing lichen in old-growth Douglas fir forests. Symbiotic nitrogen fixation in the management of temperate forests, pp. 266–275.

  • Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Zhu YG. 2019. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology 95:fiz040.

    Article  CAS  Google Scholar 

  • Dommergues Y, Balandreau J, Rinaudo G, Weinhard P. 1973. Non-symbiotic nitrogen fixation in the rhizospheres of rice, maize and different tropical grasses. Soil Biology and Biochemistry 5:83–89.

    Article  CAS  Google Scholar 

  • Doty SL, Sher AW, Fleck ND, Khorasani M, Bumgarner RE, Khan Z, et al. 2016. Variable nitrogen fixation in wild Populus. PLoS ONE 11:1–22.

    Article  Google Scholar 

  • Dynarski KA, Houlton BZ. 2017. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytologist 217:1050–1061.

    Article  Google Scholar 

  • Dynarski KA, Morford SL, Mitchell SA, Houlton BZ. 2019. Bedrock nitrogen weathering stimulates biological nitrogen fixation. Ecology 100:e02741.

    Article  Google Scholar 

  • Eisele KA, Schimel DS, Kapsutka LA, Parton WJ. 1989. Effects of available phosphorus and nitrogen–phosphorus ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79:471–474.

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5:459–462.

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist 147:13–31.

    Article  Google Scholar 

  • Griffiths RP, Harmon ME, Caldwell BA, Carpenter SE. 1993. Acetylene reduction in conifer logs during early stages of decomposition. Plant and Soil 148:53–61.

    Article  CAS  Google Scholar 

  • Gundale MJ, DeLuca TH, Nordin A. 2011. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology 17:2743–2753.

    Article  Google Scholar 

  • Gundale MJ, Wardle DA, Nilsson M-C. 2012a. The effect of altered macro-climate on N-fixation by boreal feather mosses. Biology Letters 8:805–808.

    Article  Google Scholar 

  • Gundale MJ, Nilsson M, Bansal S, Jäderlund A. 2012b. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytologist 194:454–463.

    Article  Google Scholar 

  • Gundale MJ, Bach LH, Nordin A. 2013. The impact of simulated chronic nitrogen deposition on the biomass and N-2-fixation activity of two boreal feather moss-cyanobacteria associations. Biology Letters 9:20130797.

    Article  Google Scholar 

  • Gupta VVSR, Zhang B, Penton CR, Yu J, Tiedje JM. 2019. Diazotroph Diversity and Nitrogen Fixation in Summer Active Perennial Grasses in a Mediterranean Region Agricultural Soil. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2019.00115.

    Article  Google Scholar 

  • Hartley AE, Schlesinger WH. 2002. Potential environmental controls on nitrogenase activity in biological crusts of the northern Chihuahuan Desert. Journal of Arid Environments 52:293–304.

    Article  Google Scholar 

  • Herridge DF, Giller KE, Jensen ES, Peoples MB. 2022. Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant and Soil 474:1–15.

    Article  CAS  Google Scholar 

  • Hicks W, Chen H. 2011. The effect of abiotic factors on asymbiotic nitrogen fixation in dead roots from the Pacific Northwest. Nature Precedings. https://doi.org/10.1038/npre.2011.5626.1.

    Article  Google Scholar 

  • Hicks WT, Harmon ME, Griffiths RP. 2003. Abiotic controls on nitrogen fixation and respiration in selected woody debris from the Pacific Northwest, U.S.A. Ecoscience 10:66–73. https://doi.org/10.1080/11956860.2003.11682752.

    Article  Google Scholar 

  • Hirota Y, Fujii T, Sano Y, Iyama S. 1978. Nitrogen fixation in the rhizosphere of rice. Nature 276:416–417.

    Article  CAS  Google Scholar 

  • Hofmockel KS, Schlesinger WH. 2007. Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest. Soil Science Society of America Journal 71:140–144.

    Article  CAS  Google Scholar 

  • Holguin G, Guzman MA, Bashan Y. 1992. Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: Their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiology Letters 101:207–216.

    Article  CAS  Google Scholar 

  • Houlton BZ, Wang Y-P, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330.

    Article  CAS  Google Scholar 

  • Hyvönen R, Ågren G. 2001. Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Canadian Journal of Forest Research 31:1594–1601.

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Science of the USA 94:7362–7366.

    Article  CAS  Google Scholar 

  • Jackson BG, Martin P, Nilsson M-C, Wardle DA. 2011. Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos 120:570–581.

    Article  Google Scholar 

  • Jean M, Mack MC, Johnstone JF. 2018. Spatial and temporal variation in moss-associated dinitrogen fixation in coniferous- and deciduous-dominated Alaskan boreal forests. Plant Ecology 219:837–851.

    Article  Google Scholar 

  • Jones DL, Farrar J, Giller KE. 2003. Associative Nitrogen Fixation and Root Exudation - What is Theoretically Possible in the Rhizosphere. Symbiosis 35:19–38.

    CAS  Google Scholar 

  • Jordan AC, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R, et al. 1983. Nitrogen Dynamics during Conversion of Primary Amazonian Rain Forest to Slash and Burn Agriculture. Oikos 40:131–139.

    Article  Google Scholar 

  • Kandel S, Joubert P, Doty S. 2017. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms 5:77.

    Article  Google Scholar 

  • Kaplan D, Maymon M, Agapakis CM, Lee A, Wang A, Prigge BA, Volkogon M, Hirsch AM. 2013. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. American Journal of Botany 100:1713–1725.

    Article  Google Scholar 

  • Kolb W, Martin P. 1988. Influence of nitrogen on the number of N2-fixing and total bacteria in the rhizosphere. Soil Biology and Biochemistry 20:221–225.

    Article  CAS  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH. 2016. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. PLOS ONE 11:e0152478.

    Article  Google Scholar 

  • Ladha JK, Reddy PM. 2003. Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and Soil 252:151–167.

    Article  CAS  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, et al. 2016. Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Scientific Reports. https://doi.org/10.1038/srep19355.

    Article  Google Scholar 

  • Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research 283:108541.

    Article  Google Scholar 

  • Larmola T, Leppanen SM, Tuittila E-S, Aarva M, Merila P, Fritze H, et al. 2014. Methanotrophy induces nitrogen fixation during peatland development. Proceedings of the National Academy of Sciences 111:734–739.

    Article  CAS  Google Scholar 

  • Li D, Zhang Q, Xiao K, Wang Z, Wang K. 2018. Divergent responses of biological nitrogen fixation in soil, litter and moss to temperature and moisture in a karst forest, southwest China. Soil Biology and Biochemistry 118:1–7.

    Article  CAS  Google Scholar 

  • Li CY, Maser C. 1986. New and modified techniques for studying nitrogen-fixing bacteria in small mammal droppings. U.S. Department of Agriculture Forest Service, Res. Note. PNW 441. Pacific Northwest Research Station, Portland

  • Lindo Z, Gonzalez A. 2010. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems 13:612–627.

    Article  Google Scholar 

  • Lindo Z, Whiteley JA. 2011. Old trees contribute bio-available nitrogen through canopy bryophytes. Plant and Soil 342:141–148.

    Article  CAS  Google Scholar 

  • Liu S, Liu W, Shi X, Li S, Hu T, Song L, Wu C. 2018. Dry-hot stress significantly reduced the nitrogenase activity of epiphytic cyanolichen. Science of the Total Environment 619:630–637. https://doi.org/10.1016/j.scitotenv.2017.11.179.

    Article  CAS  Google Scholar 

  • Liu X, Rousk K. 2022. The moss traits that rule cyanobacterial colonization. Annals of Botany 129:147–160.

    Article  CAS  Google Scholar 

  • Mäkipää R, Huhtiniemi S, Kaseva J, Smolander A. 2018. Asymbiotic nitrogen fixation on woody roots of Norway spruce and silver birch. Canadian Journal of Forest Research 48:172–179.

    Article  Google Scholar 

  • Marks JA, Pett-Ridge JC, Perakis SS, Allen JL, McCune B. 2015. Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium. Ecosphere 6:1–17.

    Article  Google Scholar 

  • Matson AL, Corre MD, Burneo JI, Veldkamp E. 2015. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122:281–294.

    Article  CAS  Google Scholar 

  • Matzek V, Vitousek PM. 2003. Nitrogen fixation in bryophytes, lichens, and decaying wood along a Soil-age gradient in Hawaiian montane rain forest. Biotropica 35:12–19.

    Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, et al. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist 207:505–518.

    Article  Google Scholar 

  • Menge DNL, Hedin LO. 2009. Nitrogen fixation in different biogeochemical niches along a 120,000-year chronosequence in New Zealand. Ecology 90:2190–2201.

    Article  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, Frank AC. 2016. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist 210:657–668.

    Article  CAS  Google Scholar 

  • Nardi JB, Mackie RI, Dawson JO. 2002. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? Journal of Insect Physiology 48:751–763.

    Article  CAS  Google Scholar 

  • Nash TH III. 1996. Lichen biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nasto MK, Alvarez-Clare S, Lekberg Y, Sullivan BW, Townsend AR, Cleveland CC. 2014. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters 17:1282–1289.

    Article  Google Scholar 

  • Nguyen NH, Bruns TD. 2015. The microbiome of Pinus muricata ectomycohhrizae: community assemblages, fungal species effects, and Burkholderia as important bacteria in multpartnered symbioses. Microbial Ecology 69:914–921.

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB. 2013. The Structure, Distribution, and Biomass of the World’s Forests. Annual Review of Ecology, Evolution, and Systematics 44:593–622.

    Article  Google Scholar 

  • Paul LR, Chapman BK, Chanway CP. 2007. Nitrogen fixation associated with Suillus tomentosus Tuberculate ectomycorrhizae on Pinus contorta var. latifolia. Annals of Botany 99:1101–1109.

    Article  CAS  Google Scholar 

  • Perakis SS, Pett-Ridge JC, Catricala CE. 2017. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests. Biogeochemistry 134:41–55.

    Article  CAS  Google Scholar 

  • Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, et al. 2009. Symbiotic nitrogen fixation in the fungus gardens of leaf cutter ants. Science 236:1120–1123.

    Article  Google Scholar 

  • Prévost D, Bordeleau Antoun H, LM. 1987. Effects of low temperatures on nitrogenase activity in sainfoin (Onobrychis viciifolia) nodulated by arctic rhizobia. FEMS Microbiology Letters 45:205–210.

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR. 2007. Controls Over Leaf Litter and Soil Nitrogen Fixation in Two Lowland Tropical Rain Forests. Biotropica 39:585–592.

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR. 2008. Tree Species Control Rates of Free-Living Nitrogen Fixation in a Tropical Rainforest. Ecology 89:2924–2934.

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR. 2011. Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective. Annual Review of Ecology, Evolution, and Systematics 42:489–512.

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR. 2013. Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: results from observational and experimental analyses. Biogeochemistry 114:135–147.

    Article  CAS  Google Scholar 

  • Reis CRG, Pacheco FS, Reed SC, Tejada G, Nardoto GB, Forti MC, et al. 2020. Biological nitrogen fixation across major biomes in Latin America: Patterns and global change effects. Science of the Total Environment 746:140998.

    Article  CAS  Google Scholar 

  • Ritchie ME, Raina R. 2016. Effects of herbivores on nitrogen fixation by grass endophytes, legume symbionts and free-living soil surface bacteria in the Serengeti. Pedobiologia 59:233–241.

    Article  Google Scholar 

  • Roley SS, Duncan DS, Liang D, Garoutte A, Jackson RD, Tiedje JM, Robertson GP. 2018. Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. PLOS ONE 13:e0197320.

    Article  Google Scholar 

  • Rousk K, Sorensen PL, Michelsen A. 2016. Nitrogen Transfer from Four Nitrogen-Fixer Associations to Plants and Soils. Ecosystems 19:1491–1504.

    Article  CAS  Google Scholar 

  • Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger J-P. 2017. Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytologist 214:97–107.

    Article  CAS  Google Scholar 

  • Rousk K, Sorensen PL, Michelsen A. 2018. What drives biological nitrogen fixation in high arctic tundra: Moisture or temperature? Ecosphere 2:e02117.

    Article  Google Scholar 

  • Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE. 2013. Bacterial endophytes enhance competition by invasive plants. American Journal of Botany 100:1726–1737.

    Article  CAS  Google Scholar 

  • Silvester WB. 1989. Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America. Soil Biology and Biochemistry 21:283–289.

    Article  CAS  Google Scholar 

  • Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology 85:e02546-e2618.

    CAS  Google Scholar 

  • Smithwick EA, Lucash MS, McCormack ML, Sivandran G. 2014. Improving the representation of roots in terrestrial models. Ecological Modelling 291:193–204.

    Article  CAS  Google Scholar 

  • Son Y. 2001. Non-symbiotic nitrogen fixation in forest ecosystems. Ecological Research 16:183–196.

    Article  CAS  Google Scholar 

  • Soper FS, Taylor BN, Winbourne JB, Wong MY, Dynarski KA, Reis CRG, Peoples MB, Cleveland CC, Reed SC, Menge DNL, Perakis SS. 2021. A roadmap for sampling and scaling nitrogen fixation in terrestrial ecosystems. Methods in Ecology and Evolution 12:1122–1137.

    Article  Google Scholar 

  • Sorensen PL, Lett S, Michelsen A. 2012. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecology 213:695–706.

    Article  Google Scholar 

  • Staccone A, Liao W, Perakis S, Compton J, Clark CM, Menge D. 2020. A Spatially Explicit, Empirical Estimate of Tree-Based Biological Nitrogen Fixation in Forests of the United States. Global Biogeochemical Cycles 34:1–18.

    Article  Google Scholar 

  • Stanton DE, Batterman SA, Von Fischer JC, Hedin LO. 2019. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 100:1–8.

    Article  Google Scholar 

  • Stewart KJ, Coxson D, Grogan P. 2011. Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arctic, Antarctic, and Alpine Research 43:267–278.

    Article  Google Scholar 

  • Taylor BN, Chazdon RL, Menge DNL. 2019. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100:1–13.

    Article  Google Scholar 

  • Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J. 2011. Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research: Biogeosciences 116:2–9.

    Article  Google Scholar 

  • Tierney JA, Hedin LO, Wurzburger N. 2019. Nitrogen fixation does not balance fire-induced nitrogen losses in longleaf pine savannas. Ecology 100:e02735.

    Article  Google Scholar 

  • Todd RL, Meyer RD, Waide JB. 1978. Nitrogen Fixation in a Deciduous Forest in the South-Eastern United States Author. Ecological Bulletins 26:172–177.

    Google Scholar 

  • Treseder KK, Vitousek PM. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954. https://doi.org/10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2.

    Article  Google Scholar 

  • Turner MG, Whitby TG, Romme WH. 2019. Feast not famine: Nitrogen pools recover rapidly in 25-y old postfire lodgepole pine. Ecology 100:e02626.

    Article  Google Scholar 

  • Ulyshen MD. 2015. Insect-mediated nitrogen dynamics in decomposing wood. Ecological Entomology 40:97–112.

    Article  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, et al. 2012. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant and Soil 356:5–21.

    Article  CAS  Google Scholar 

  • Vile MA, Kelman Wieder R, Živković T, Scott KD, Vitt DH, et al. 2014. N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328.

    Article  CAS  Google Scholar 

  • Vitousek P, Hobbie S. 2000. Heterotrophic Nitrogen Fixation in Decomposing Litter: Patterns and Regulation. Ecology 81:2366–2376.

    Article  Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nitrogen Limitation on Land and in the Sea: How Can It Occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Voroney RP. 2007. The soil habitat. Paul EA, editor. Soil Microbiology, Ecology, and Biochemistry. San Francisco: Academic Press. p45–52.

  • Weedon JT, Cornwell K, Cornelissen JHC, Zanne AE, Wirth C, Commes DA. 2009. Global meta-analysis of wood decomposition rates: a role of trait variation among tree species? Ecology Letters 12:45–56.

    Article  Google Scholar 

  • Wickstrom CE, Garono RJ. 2007. Associative Rhizosphere Nitrogen Fixation (Acetylene Reduction) Among Plants from Ohio Peatlands. Ohio Journal of Science 107:39–43.

    Google Scholar 

  • Wieder WR, Cleveland CC, Lawrence DM, Bonan GB. 2015. Effects of model structural uncertainty on carbon cycle projections: Biological nitrogen fixation as a case study. Environmental Research Letters 10:044016.

    Article  Google Scholar 

  • Winbourne JB, Brewer SW, Houlton BZ. 2017. Iron controls of di-nitrogen fixation in karst tropical forest. Ecology 98:773–781.

    Article  Google Scholar 

  • Witty J, Keay PJ, Frogatt DJ, Dart PJ. 1979. Algal nitrogen fixation on temperate arable fields: the Broadbalk experiment. Plant and Soil 52:151–164.

    Article  CAS  Google Scholar 

  • Wohlin C 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th international conference on evaluation and assessment in software engineering (pp. 1–10).

  • Wurzburger N. 2016. Old-growth temperate forests harbor hidden nitrogen-fixing bacteria. New Phytologist 210:374–376.

    Article  Google Scholar 

  • Wurzburger N, Bellenger JP, Kraepiel AM, Hedin LO. 2012. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS One 7:e33710.

    Article  CAS  Google Scholar 

  • Wurzburger N, Motes JI, Miniat CF. 2021. A framework for scaling symbiotic nitrogen fixation using the most widespread nitrogen fixer in eastern deciduous forests of the United States. Journal of Ecology 110:569–581.

    Article  Google Scholar 

  • Yamada A, Inoue T, Wiwatwitaya D, Ohkuma M, Kudo T, Sugimoto A. 2006. Nitrogen fixation by termites in tropical forests, Thailand. Ecosystems 9:75–83.

    Article  CAS  Google Scholar 

  • Zehr J, Capone DG. 2020. Changing perspectives in marine nitrogen fixation. Science 368:eaay91.

    Article  Google Scholar 

  • Zheng M, Zhang W, Luo Y, Li D, Wang S, Huang J, Lu X, Mo J. 2018. Stoichiometry controls asymbiotic nitrogen fixation and its response to nitrogen inputs in a nitrogen-saturated forest. Ecology 99:2037–2046.

    Article  Google Scholar 

  • Zilius M, Bonaglia S, Broman E, Chiozzini VG, Samuiloviene A, Nascimento FJA, Cardini U, Bartoli M. 2020. N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Scientific Reports 10:13966. https://doi.org/10.1038/s41598-020-70834-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is a contribution from a working group on biological nitrogen fixation supported by the U.S. Geological Survey John Wesley Powell Center and Ecosystems Mission Area to S.S.P., S.C.R., D.N.L.M., and C.C.C. C.C.C. acknowledges support from grants from the National Science Foundation to investigate nutrient cycling in terrestrial ecosystems (DEB-1754126, DEB-1556643, DEB-2027263). S.A.B. acknowledges support from the United Kingdom Natural Environment Research Council (NE/M019497/1, NE/S009663/1) and The Leverhulme Trust. M.G.T. acknowledges support from the Vilas Trust of the University of Wisconsin-Madison and the National Science Foundation (DEB-2027261). V.G.S. acknowledges support by the US Department of Energy, Office of Science, Biological and Environmental Research (BER) under contract DE-AC05-00OR22725. M.J.G. acknowledges support from the Swedish Research Council VR. We thank S. Jovan and A. Staccone for contributing to the development of the database. The paper also benefitted from useful discussions with B. Weber and E. Rodriguez-Caballero. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We are grateful for constructive feedback from the editors, E. Rastetter, and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory C. Cleveland.

Additional information

Author Contribution: All authors contributed to discussions about the ideas expressed in this paper. C.R.G.R. and S.P. led the development of the database, and all authors participated in the literature search and provided data to the database. C.C.C. and K.A.D. led the writing, and all co-authors provide text and revisions to the submitted version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Supplementary file2 (XLSX 37 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleveland, C.C., Reis, C.R.G., Perakis, S.S. et al. Exploring the Role of Cryptic Nitrogen Fixers in Terrestrial Ecosystems: A Frontier in Nitrogen Cycling Research. Ecosystems 25, 1653–1669 (2022). https://doi.org/10.1007/s10021-022-00804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00804-2

Keywords

Navigation