Nitrogen Identity Drives Differential Impacts of Nutrients on Coral Bleaching and Mortality

Abstract

Nitrogen pollution increases the susceptibility of corals to heat-induced bleaching. However, different forms of nitrogen (nitrate vs. ammonium/urea) may have different impacts on thermal tolerance of corals. We used an 18-month field experiment on the oligotrophic fore reef of Moorea, French Polynesia, to test how different forms of nitrogen (nitrate vs. urea) impacted coral bleaching. The experiment spanned two moderate thermal stress events in 2016 and 2017. Nitrate increased bleaching prevalence in Acropora by up to 100% and in Pocillopora by up to 60% compared to control corals. Urea exposure often had intermediate effects on bleaching (not different from either control or nitrate-exposed corals) in both taxa. Importantly, nitrate prolonged bleaching in both Acropora and Pocillopora as nitrate-exposed corals remained bleached even after thermal stress ended, while control and urea-exposed corals had mostly recovered. Nitrate exposure also increased the prevalence of partial mortality in Pocillopora colonies and more than tripled the number of colonies that completely died. Our data are the first to show contrasting effects of different forms of nitrogen on coral bleaching and mortality in a natural reef environment, linking previous patterns from large-scale correlative studies with results from more mechanistic laboratory experiments. Most importantly, we showed that corals exposed to nitrate exhibited more frequent bleaching, bleached for longer duration, and were more likely to die than corals in low nitrogen conditions. Exposure to excess nitrogen, particularly anthropogenic nitrogen, may lower the temperature threshold at which corals bleach, triggering bleaching events on polluted reefs even when typical thermal stress thresholds have not been crossed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Alldredge A. 2019. MCR LTER: Coral Reef: water column: nutrients, ongoing since 2005. knb-lter-mcr.1034.9. https://doi.org/10.6073/pasta/9328a024f2bf16ecc66024f07dbcc574.

  2. Allgeier JE, Burkepile DE, Layman CA. 2017. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob Change Biol 23:2166–78.

    Article  Google Scholar 

  3. Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R. 2009. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct Ecol 23:539–50.

    Article  Google Scholar 

  4. Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. 2018. Climate change promotes parasitism in a coral symbiosis. ISME J 31:1–10.

    Google Scholar 

  5. Bennett EM, Carpenter SR, Caraco NF. 2001. Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience 51:227–34.

    Article  Google Scholar 

  6. Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C. 2013. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J Exp Biol 216:2665–74.

    PubMed  Article  Google Scholar 

  7. Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Wright A, Payri C, Holulbrèque F. 2018. Enhancement of coral calcification via the interplay of nickel and urease. Aquat Toxicol 200:247–56.

    PubMed  Article  CAS  Google Scholar 

  8. Bruno JF, Petes LE, Harvell CD, Hettinger A. 2003. Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056–61.

    Article  Google Scholar 

  9. Cacciapaglia C, Van Woesik R. 2015. Climate-change refugia: shading reef corals by turbidity. Glob Change Biol 22:1145–54.

    Article  Google Scholar 

  10. Crandall JB, Teece MA. 2012. Urea is a dynamic pool of bioavailable nitrogen in coral reefs. Coral Reefs 31:207–14.

    Article  Google Scholar 

  11. Cunning R, Baker AC. 2013. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Climate Change 3:259–62.

    Article  Google Scholar 

  12. D’Angelo C, Wiedenmann J. 2014. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93.

    Article  Google Scholar 

  13. Dagenais-Bellefeuille S, Morse D. 2013. Putting the N in dinoflagellates. Front Microbiol 4:369.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Ezzat L, Maguer J-F, Grover R, Ferrier-Pagès C. 2015. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH4+ and NO3 supply. Proc R Soc B Biol Sci 282:20150610.

    Article  CAS  Google Scholar 

  15. Ezzat L, Maguer J-F, Grover R, Ferrier-Pagès C. 2016a. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci Rep 6:1–11.

    Article  CAS  Google Scholar 

  16. Ezzat L, Towle E, Irisson JO, Langdon C, Ferrier-Pagès C. 2016b. The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limnol Oceanogr 61:89–102.

    CAS  Article  Google Scholar 

  17. Ferdie M, Fourqurean JW. 2004. Responses of seagrass communities to fertlization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnol Oceanogr 49:2082–94.

    Article  Google Scholar 

  18. Fitt WK, McFarland FK, Warner ME, Chilcoat GC. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–85.

    CAS  Article  Google Scholar 

  19. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O. 2013. Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Change 3:165–70.

    Article  Google Scholar 

  20. Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C. 2011. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous change in temperature and pH. PLoS ONE 6:e25024.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y. 2014. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Change Biol 20:3823–33.

    Article  Google Scholar 

  22. Grover R, Maguer J-F, Raynaud-Vaganay S, Ferrier-Pagès C. 2002. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol Oceanogr 47:782–90.

    Article  Google Scholar 

  23. Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C. 2003. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 48:2266–74.

    CAS  Article  Google Scholar 

  24. Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C. 2006. Urea uptake by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216–25.

    CAS  Article  Google Scholar 

  25. Heron SF, Maynard JA, van Hooidonk R, Eakin CM. 2016. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep 6:38402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK. 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–3.

    CAS  PubMed  Article  Google Scholar 

  27. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:373–7.

    CAS  PubMed  Article  Google Scholar 

  28. Kendall C, Elliott EM, Wankel SD. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener RH, Lajtha K, Eds. Stable Isotopes in Ecology and Environmental Science. 2nd edn. Hoboken: Blackwell. p 375–449.

    Google Scholar 

  29. Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–78.

    CAS  PubMed  Article  Google Scholar 

  30. Loya S, Sakai K, Yamazato K, Nakano Y, Sambali W, van Woesik R. 2001. Coral bleaching: the winners and the losers. Ecol Lett 4:122–31.

    Article  Google Scholar 

  31. Luke SG. 2017. Evaluating significance in linear mixed-effects models in R. Behav Res Methods 49:1494–502.

    PubMed  Article  Google Scholar 

  32. MacNeil MA, Mellin C, Matthews S, Wolff NH, McClanahan TR, Devlin M, Drovandi C, Mengersen K, Graham NAJ. 2019. Water quality mediates resilience on the Great Barrier Reef. Nat Ecol Evolution 3:620–7.

    Article  Google Scholar 

  33. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. 2018. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 8:2240–52.

    PubMed  PubMed Central  Google Scholar 

  34. Pratchett MS, McCowan D, Maynard JA, Heron SF. 2013. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLoS ONE 8:e70443.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. R Core Team. 2018. R: A Language and Environment for Statisical Computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  36. Revilla M, Alexander J, Glibert PM. 2005. Urea analysis in coastal waters: comparison of enzymatic and direct methods. Limnol Oceanogr Methods 3:290–9.

    CAS  Article  Google Scholar 

  37. Rodrigues LJ, Grottoli AG. 2007. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–82.

    Article  Google Scholar 

  38. Rosset S, Wiedenmann J, Reed AJ, D’Angelo C. 2017. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull 118:180–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Schaus MH, Vanni MJ, Wissing TE, Bremigan MT, Garvey JE, Stein RA. 1997. Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnol Oceanogr 42:1386–97.

    CAS  Article  Google Scholar 

  40. Shantz AA, Burkepile DE. 2014. Context-dependent effects of nutrient loading on the coral-algal mutualism. Ecology 95:1995–2005.

    PubMed  Article  Google Scholar 

  41. Sinha E, Michalak AM, Balaji V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357:405–8.

    CAS  PubMed  Article  Google Scholar 

  42. Sully S, Burkepile DE, Donvan MK, Hodgson G, van Woesik R. 2019. A global analysis of coral bleaching over the past two decades. Nat Commun 10:1264.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. van Hooidonk R, Maynard J, Tamelander J, Gove J, Ahmadia G, Raymundo L, Williams G, Heron SF, Planes S. 2016. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci Rep 6:1–8.

    Article  CAS  Google Scholar 

  44. Vega Thurber R, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld J. 2014. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Change Biol 20:544–54.

    Article  Google Scholar 

  45. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth’s ecosystems. Science 277:494–9.

    CAS  Article  Google Scholar 

  46. Wagner DE, Kramer P, van Woesik R. 2010. Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar Ecol Prog Ser 408:65–78.

    Article  Google Scholar 

  47. Wang L, Shantz AA, Payet JP, Sharpton TJ, Foster A, Burkepile DE, Vega Thurber R. 2018. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front Mar Sci 5:101.

    CAS  Article  Google Scholar 

  48. Whiles MR, Huryn AD, Taylor BW, Reeve JD. 2009. Influence of handling stress and fasting on estimates of ammonium excretion by tadpoles and fish: recommendations for designing excretion experiments. Limnol Oceanogr Methods 7:1–7.

    CAS  Article  Google Scholar 

  49. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, Achterberg EP. 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:160–4.

    CAS  Article  Google Scholar 

  50. Wooldridge SA. 2009. A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshw Res 60:483–96.

    CAS  Article  Google Scholar 

  51. Wooldridge SA. 2016. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef, Australia. Mar Pollut Bull . https://doi.org/10.1016/j.marpolbul.2016.04.054.

    Article  PubMed  Google Scholar 

  52. Wooldridge SA, Done TJ. 2009. Improved water quality can ameliorate effects of climate change on corals. Ecol Appl 19:1492–9.

    PubMed  Article  Google Scholar 

  53. Zaneveld J, Burkepile DE, Shantz AA, Pritchard C, McMinds R, Payet J, Welsh R, Correa AMS, Lemoine NP, Rosales S, Fuchs C, Vega Thurber R. 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 7:11833.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

National Science Foundation Grants OCE-1619697 to SJH, DEB, and RJS, OCE-1547952 to DEB, and OCE-1236905 and OCE-1637396 for the Moorea Coral Reef LTER to RJS and SJH, and a Hong Kong Research Grants Council Grant GRF# 17100014 to DMB supported this research. We thank M. Anskog, A. Duran, C. Fuchs, K. Landfield, S. Leung, K. Neumann, E. Schmeltzer, K. Seydel, A. Simoes Correa, A.T.S. Tang, A. Thurber, R. Vega Thurber, R. Welsh, and S. Wise for field and laboratory assistance. Research was completed under permits issued by the Territorial Government of French Polynesia (Délégation à la Recherche) and the Haut-commissariat de la République en Polynésie Francaise (DTRT) (Protocole d’Accueil 2015-2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deron E. Burkepile.

Additional information

Author's Contributions

DEB, TCA, RJS, and SJH designed the experiment; all authors contributed to field or laboratory work; DEB and AAS collected data on coral bleaching and mortality; AAS, MCL, and DEB analyzed data; DEB wrote the first draft of the manuscript; all authors contributed to manuscript revisions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 112 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burkepile, D.E., Shantz, A.A., Adam, T.C. et al. Nitrogen Identity Drives Differential Impacts of Nutrients on Coral Bleaching and Mortality. Ecosystems 23, 798–811 (2020). https://doi.org/10.1007/s10021-019-00433-2

Download citation

Keywords

  • nutrient pollution
  • climate change
  • coral reef
  • eutrophication
  • symbiosis
  • anthropocene