The Shifting Role of mRUE for Regulating Ecosystem Production

Abstract

To create a comprehensive view of ecosystem resource use, we integrated parallel resource use efficiency observations into a multiple-resource use efficiency (mRUE) framework using a dynamic factor analysis model. Results from 56 site-years of eddy covariance data and mRUE factors for a site in the US Midwest show temporal dynamics and coherence (using Pearson’s R) among resources are associated with interannual variation in precipitation. Loading factors are derived from mRUE observations and quantify how strongly data are connected to the underlying ecosystem state. Water and light resource use loading factors are coherent at annual timescales (Pearson’s R of 0.86), whereas declining patterns of carbon use efficiency loading factors highlight the ecosystem’s trade-off between carbon uptake and respiration during the growing season. At annual and monthly timescales, influence decreases from ~ 85 to ~ 65% for loading factors for carbon use, while influence of light use loading factors peaks to ~ 60% at growing season timescales. Quantifying variation in ecosystem function provides novel insights into the temporal dynamics of changing importance of multiple resources to ecosystem function.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data Accessibility Statement

Data used for this project are available in the Michigan State University Landscape Ecology & Ecosystem Science Lab data repository (http://lees.geo.msu.edu/research/NASA_carboncycle/) and the Climate Science Research Group data repository (https://sites.google.com/view/climate-science-lab/data-and-code), while analysis code is availed at https://github.com/ClimateScienceResearchGroup/mRUE. When accepted for publication, data and code will be available at Dryad.

References

  1. Abraha M, Chen J, Chu H, Zenone T, John R, Su YJ, Hamilton SK, Robertson GP. 2015. Evapotranspiration of annual and perennial biofuel crops in a variable climate. GCB Bioenergy 7:1344–56.

    Google Scholar 

  2. Abraha M, Gelfand I, Hamilton SK, Shao CL, Su YJ, Robertson GP, Chen JQ. 2016. Ecosystem water-use efficiency of annual corn and perennial grasslands: contributions from land-use history and species composition. Ecosystems 19:1001–12.

    CAS  Google Scholar 

  3. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82:2415–34.

    Google Scholar 

  4. Bhardwaj A, Zenone T, Jasrotia P, Robertson G, Chen J, Hamilton S. 2011. Water and energy footprints of bioenergy crop production on marginal lands. GCB Bioenergy 3:208–22.

    Google Scholar 

  5. Bradford MA, Crowther TW. 2013. Carbon use efficiency and storage in terrestrial ecosystems. New Phytologist 199:7–9.

    CAS  PubMed  Google Scholar 

  6. Brillinger DR. 1981. Time series: data analysis and theory. Philadelphia: Siam.

    Google Scholar 

  7. Campbell GS, Norman JM. 2012. An introduction to environmental biophysics. Berlin: Springer.

    Google Scholar 

  8. Carmo-Silva E, Scales JC, Madgwick PJ, Parry MA. 2015. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell & Environment 38:1817–32.

    CAS  Google Scholar 

  9. Chapin FS, Matson PA, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. Berlin: Springer.

    Google Scholar 

  10. Clement R. 1999. EdiRe data software, v. 1.5. 0.32. Edinburgh: University of Edinburgh.

    Google Scholar 

  11. de Vries SC, van de Ven GW, van Ittersum MK, Giller KE. 2010. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass and Bioenergy 34:588–601.

    Google Scholar 

  12. de Wit C. 1992. Resource use efficiency in agriculture. Agricultural Systems 40:125–51.

    Google Scholar 

  13. Field CB, Chapin FS, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere—a resource-based approach. Annual Review of Ecology and Systematics 23:201–35.

    Google Scholar 

  14. Friedland KD, Hare JA. 2007. Long-term trends and regime shifts in sea surface temperature on the continental shelf of the northeast United States. Continental Shelf Research 27:2313–28.

    Google Scholar 

  15. Funk JL, Vitousek PM. 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–81.

    CAS  PubMed  Google Scholar 

  16. Gill AL, Finzi AC. 2016. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecology Letters 19:1419–28.

    PubMed  Google Scholar 

  17. Gordo O, Sanz JJ. 2005. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–95.

    PubMed  Google Scholar 

  18. Han JJ, Chen JQ, Miao Y, Wan SQ. 2016. Multiple resource use efficiency (mRUE): a new concept for ecosystem production. Scientific Reports 6:37453.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hodapp D, Hillebrand H, Striebel M. 2019. “Unifying” the concept of resource use efficiency in ecology. Frontiers in Ecology and Evolution 6:233.

    Google Scholar 

  20. Holmes EE, Ward EJ, Wills K. 2012. MARSS: multivariate autoregressive state-space models for analyzing time-series data. R Journal 4:11–19.

    Google Scholar 

  21. Kikuzawa K. 1995. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany-Revue Canadienne De Botanique 73:158–63.

    Google Scholar 

  22. Kunkel KE, Easterling DR, Hubbard K, Redmond K. 2004. Temporal variations in frost-free season in the United States: 1895–2000. Geophysical Research Letters 31.

  23. Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw KT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology 113:97–120.

    Google Scholar 

  24. Legendre P, Legendre L. 2012. Chapter 12—Ecological data series. In: Legendre P, Legendre L, Eds. Developments in environmental modelling. Amsterdam: Elsevier. pp 711–83.

    Google Scholar 

  25. Linares JC, Camarero JJ. 2012. Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. European Journal of Forest Research 131:1001–12.

    Google Scholar 

  26. Motew MM, Kucharik CJ. 2013. Climate-induced changes in biome distribution, NPP, and hydrology in the upper midwest US: a case study for potential vegetation. Journal of Geophysical Research: Biogeosciences 118:248–64.

    Google Scholar 

  27. National Climatic Data Center N. 2018. Climate data online.

  28. Noormets A. 2009. Phenology of ecosystem processes: applications in global change research. Berlin: Springer.

    Google Scholar 

  29. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D. 2006. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–83.

    CAS  Google Scholar 

  30. Parry MAJ, Hawkesford MJ. 2010. Food security: increasing yield and improving resource use efficiency. Proceedings of the Nutrition Society 69:592–600.

    PubMed  Google Scholar 

  31. Reed DE, Dugan HA, Flannery AL, Desai AR. 2018a. Carbon sink and source dynamics of a eutrophic deep lake using multiple flux observations over multiple years. Limnology and Oceanography Letters 3:285–92.

    CAS  Google Scholar 

  32. Reed DE, Frank JM, Ewers BE, Desai AR. 2018b. Time dependency of eddy covariance site energy balance. Agricultural and Forest Meteorology 249:467–78.

    Google Scholar 

  33. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–39.

    Google Scholar 

  34. Reichstein M, Papale D, Valentini R, Aubinet M, Bernhofer C, Knohl A, Laurila T, Lindroth A, Moors E, Pilegaard K, Seufert G. 2007. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters 34.

  35. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H. 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54:547–60.

    Google Scholar 

  36. Shi H, Li L, Eamus D, Cleverly J, Huete A, Beringer J, Yu Q, Van Gorsel E, Hutley L. 2014. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes. Environmental Research Letters 9:104002.

    Google Scholar 

  37. Sinclair TR, Horie T. 1989. Leaf nitrogen, photosynthesis, and crop radiation use efficiency—a review. Crop Science 29:90–8.

    Google Scholar 

  38. Tarvainen L, Räntfors M, Wallin G. 2015. Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand. Plant, Cell & Environment 38:2487–96.

    CAS  Google Scholar 

  39. Wu C, Chen JM, Desai AR, Hollinger DY, Arain MA, Margolis HA, Gough CM, Staebler RM. 2012. Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sensing of Environment 118:60–72.

    Google Scholar 

  40. Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15:5015–30.

    CAS  Google Scholar 

  41. Yi C, Ricciuto D, Li R, Wolbeck J, Xu X, Nilsson M, Aires L, Albertson JD, Ammann C, Arain MA. 2010. Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters 5:034007.

    Google Scholar 

  42. Zenone T, Chen J, Deal MW, Wilske B, Jasrotia P, Xu J, Bhardwaj AK, Hamilton SK, Philip RG. 2011. CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. GCB Bioenergy 3:401–12.

    Google Scholar 

  43. Zuur AF, Fryer RJ, Jolliffe IT, Dekker R, Beukema JJ. 2003a. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14:665–85.

    Google Scholar 

  44. Zuur AF, Tuck ID, Bailey N. 2003b. Dynamic factor analysis to estimate common trends in fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences 60:542–52.

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the NASA Carbon Cycle & Ecosystems program (NNX17AE16G); the Great Lakes Bioenergy Research Center funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; and the Long-term Ecological Research Program (DEB 1637653) at the Kellogg Biological Station. We thank Yost R. for programming assistance with R and MATLAB, as well as Tarek El-Madany and one anonymous reviewer for their constructive comments on our work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David E. Reed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reed, D.E., Chen, J., Abraha, M. et al. The Shifting Role of mRUE for Regulating Ecosystem Production. Ecosystems 23, 359–369 (2020). https://doi.org/10.1007/s10021-019-00407-4

Download citation

Keywords

  • multiple-resource use efficiency
  • ecosystem production
  • eddy covariance
  • dynamic factor analysis
  • carbon cycling
  • ecosystem function