Ecosystems

pp 1–15 | Cite as

Know Your Neighbours: Drought Response of Norway Spruce, Silver Fir and Douglas Fir in Mixed Forests Depends on Species Identity and Diversity of Tree Neighbourhoods

  • Valentina Vitali
  • David I. Forrester
  • Jürgen Bauhus
Article

Abstract

Norway spruce is a widely cultivated species in Central Europe; however, it is highly susceptible to droughts, which are predicted to become more frequent in the future. A solution to adapt spruce forests to droughts could be the conversion to mixed-species stands containing species which are less sensitive to drought and do not increase the drought stress in spruce. Here we assessed the drought response of spruce and the presumably more drought-tolerant silver fir and Douglas fir in mixed-conifer stands. We measured tree ring widths of 270 target trees, which grew in mixed and mono-specific neighbourhoods in 18 managed stands in the Black Forest, to quantify the complementarity effects caused by species interactions on growth during the extreme drought event of 2003 and for a number of years with “normal” growth and climatic conditions. Mixed-species neighbourhoods did not significantly affect tree ring growth in normal years. However, during the drought, silver fir benefitted from mixing, while Douglas fir was more drought-stressed in the mixture. The drought response of spruce was dependent on the density and species composition of the neighbourhood, showing both positive and negative mixing effects. Mixed stands containing these tree species could improve adaptation to drought because the risks of extreme events are spread across species, and the performance of individual species is improved. Our knowledge about specific species interactions needs to be improved to manage tree mixtures more effectively with regard to the participating species and stand density.

Keywords

Abies alba biodiversity climate change dendroecology drought stress Europe forest management mixed forest Picea abies Pseudotsuga menziesii 

Notes

Acknowledgements

This study was financially supported through a KLIMOPASS Grant (No. 4500354096/23) provided by the Baden-Württemberg Ministry of Environment, Climate and Energy to Jürgen Bauhus. The authors thank the generous support of ForstBW, the competent forestry districts and foresters without whom the project would have not been possible. Further thanks go to Dr. Rüdiger Unseld, Thomas Weich, Audrey Louy, Clara Arranz and Raphaële Piché for their support of field work.

Supplementary material

10021_2017_214_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1511 kb)

References

  1. Adams HD, Luce CH, Breshears DD, Allen CD, Weiler M, Hale VC, Smith AMS, Huxman TE. 2012. Ecohydrological consequences of drought- and infestation-triggered tree die-off. Insights and hypotheses. Ecohydrology 5:145–59.CrossRefGoogle Scholar
  2. Anderegg WRL, Flint A, C-y Huang, Flint L, Berry JA, Davis FW, Sperry JS, Field CB. 2015. Tree mortality predicted from drought-induced vascular damage. Nat Geosci 8:367–71.CrossRefGoogle Scholar
  3. Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.CrossRefGoogle Scholar
  4. Bauhus J, Forrester D, Gardiner B, Jactel H, Vallejo R, Pretzsch H. 2017. Ecological stability of mixed-species forests. In: Pretzsch H, Forrester DI, Bauhus J, Eds. Mixed-species forests ecology and management. Berlin, Heidelberg: Springer.Google Scholar
  5. Binkley D, Dunkin KA, DeBell D, Ryan MG. 1992. Production and nutrient cycling in mixed plantations of Eucalyptus and Albizia in Hawaii. For Sci 38:393–408. http://www.ingentaconnect.com/content/saf/fs/1992/00000038/00000002/art00015.
  6. BMEL. 2014. Der Wald in Deutschland—Ausgewählte Ergebnisse der Bundeswaldinventur, pp 1–54.Google Scholar
  7. Boden S, Kahle H-P, Kv Wilpert, Spiecker H. 2014. Resilience of Norway spruce (Picea abies (L.) Karst) growth to changing climatic conditions in Southwest Germany. For Ecol Manag 315:12–21.CrossRefGoogle Scholar
  8. Bouriaud O, Popa I. 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23:95–106.CrossRefGoogle Scholar
  9. Brassard BW, Chen HYH, Bergeron Y, Paré D. 2011. Differences in fine root productivity between mixed- and single-species stands. Funct Ecol 25:238–46.CrossRefGoogle Scholar
  10. Brassard BW, Chen HYH, Cavard X, Laganière J, Reich PB, Bergeron Y, Paré D, Yuan Z, Chen H. 2013. Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–19.CrossRefGoogle Scholar
  11. Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought. A review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–44.CrossRefGoogle Scholar
  12. Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K. 2011. Statistical mapping of tree species over Europe. Eur J For Res 1:145–57.Google Scholar
  13. Callaway RM, Walker LR. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–65. http://www.jstor.org/stable/2265936.
  14. Charpentier A. 2011. On the return period of the 2003 heat wave. Clim Change 109:245–60.CrossRefGoogle Scholar
  15. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.CrossRefPubMedGoogle Scholar
  16. Cook E, Kairiūkštis L. 1990. Methods of dendrochronology. Applications in the environmental science. Dordrecht: Kluwer Academic Publishers; International Institute for Applied Systems Analysis.CrossRefGoogle Scholar
  17. del Rio M, Schutze G, Pretzsch H. 2014. Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol (Stuttg) 16:166–76.CrossRefGoogle Scholar
  18. Desplanque C, Rolland C, Schweingruber FH. 1999. Influence of species and abiotic factors on extreme tree ring modulation. Trees 13:218.CrossRefGoogle Scholar
  19. Deutscher Wetterdienst. 2013. REGNIE: Regionalisierte Niderschläge Verfahrensbeschreibung und Nutz eranleitung. REGNIE: Verfahrensbeschreibung und Nutzeranleitung.Google Scholar
  20. Feliksik E, Wilczyński S. 2009. The effect of climate on tree-ring chronologies of native and nonnative tree species growing under homogenous site conditions. Geochronometria 33:49–57.CrossRefGoogle Scholar
  21. Finch O-D, Szumelda A. 2007. Introduction of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) into Western Europe. Epigaeic arthropods in intermediate-aged pure stands in northwestern Germany. For Ecol Manag 242:260–72.CrossRefGoogle Scholar
  22. Forrester DI. 2015. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35:289–304.CrossRefPubMedGoogle Scholar
  23. Forrester DI, Albrecht AT. 2014. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For Ecol Manag 328:94–102.CrossRefGoogle Scholar
  24. Forrester DI, Bauhus J. 2016. A review of processes behind diversity—productivity relationships in forests. Curr For Rep 2:45–61.CrossRefGoogle Scholar
  25. Forrester DI, Bonal D, Dawud S, Gessler A, Granier A, Pollastrini M, Grossiord C, Finn J. 2016. Drought responses by individual tree species are not often correlated with tree species diversity in European forests. J Appl Ecol 53:1725–34.CrossRefGoogle Scholar
  26. Forrester DI, Kohnle U, Albrecht AT, Bauhus J. 2013. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manag 304:233–42.CrossRefGoogle Scholar
  27. ForstBW. 2016. ForstBW Praxis Zuwachstabelle.Google Scholar
  28. Fritts HC. 1976. Tree rings and climate. London (NY): Academic Press.Google Scholar
  29. Füssel H-M, Kristensen P, Jol A, Marx A, Hildén M. 2017. Climate change, impacts and vulnerability in Europe 2016. An indicator-based report. Luxembourg: Publications Office of the European Union.Google Scholar
  30. Grissino-Mayer HD. 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree Ring Res. 57(2):205–21.Google Scholar
  31. Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE. 2013. Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–7.CrossRefGoogle Scholar
  32. Harper JL. 1977. Population biology of plants. London (NY): Academic Press.Google Scholar
  33. Holmes RL. 1983. Computer-assited quality control in tree-ring dating and measurements. Tree Ring Bull 43:69–78.Google Scholar
  34. Höltermann A, Klingenstein F, Ssymank A. 2008. Naturschutzfachliche Bewertung der Douglasie aus Sicht des Bundesamt für Naturschutz (BfN). LWF (Hrsg.) Die Douglasie- Perspektiven im Klimawandel. LWF Wissen 59:74–82.Google Scholar
  35. IPCC. 2014. Climate change 2013—the physical science basis. Intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  36. Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG. 2017. Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep 3:223–43.Google Scholar
  37. Jose S, Williams R, Zamora D. 2006. Belowground ecological interactions in mixed-species forest plantations. For Ecol Manag 233:231–9.CrossRefGoogle Scholar
  38. Kahle H-P, Spiecker H, Aldinger E, Michiels HG. 2008. Auswirkungen extrem warmer und trockener Witterungsbedingungen auf das Wachstum von Fichten und Buchen in verschiedenen Höhenlagen im Südschwarzwald. Berichte Freiburger Forstliche Forschung Heft 76:34.Google Scholar
  39. Kelty MJ. 2006. The role of species mixtures in plantation forestry. For Ecol Manage 233:195–204.CrossRefGoogle Scholar
  40. Knoke T, Ammer C, Stimm B, Mosandl R. 2008. Admixing broadleaved to coniferous tree species. A review on yield, ecological stability and economics. Eur J For Res 127:89–101.CrossRefGoogle Scholar
  41. Köstler JN, Brückner E, Bibelriether H. 1968. Die Wurzeln der Waldbäume. Untersuchungenzur Morphologie der Waldbäume in Mitteleuropa. Hamburg und Berlin: Verlag Paul Parey.Google Scholar
  42. Le Maire G, Nouvellon Y, Christina M, Ponzoni FJ, Gonçalves JLM, Bouillet J-P, Laclau J-P. 2013. Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 288:31–42.CrossRefGoogle Scholar
  43. Lebourgeois F. 2007. Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French Permanent Plot Network (RENECOFOR). Ann For Sci 64:333–43.CrossRefGoogle Scholar
  44. Lebourgeois F, Gomez N, Pinto P, Mérian P. 2013. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag 303:61–71.CrossRefGoogle Scholar
  45. Lévesque M, Rigling A, Bugmann H, Weber P, Brang P. 2014. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric For Meteorol 197:1–12.CrossRefGoogle Scholar
  46. Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Herault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs G-J, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei X, Schelhaas M-J, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, COOMES DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonke B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Balazy R, Oleksyn J, Zawila-Niedzwiecki T, Bouriaud O, Bussotti F, Finer L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science (New York, N.Y.) 354.Google Scholar
  47. Lintunen A. 2013. Crown architecture and its role in species interactions in mixed boreal forests. Diss For.  https://doi.org/10.14214/df.165.
  48. Lloret F, Keeling EG, Sala A. 2011. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–20.CrossRefGoogle Scholar
  49. Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–6.CrossRefPubMedGoogle Scholar
  50. Maliva R, Missimer TM. 2012. Arid lands water evaluation and management. Berlin (NY): Springer.CrossRefGoogle Scholar
  51. Meining SV, Wilpert Kv, Schäffer J, Hartmann P, Schumacher J, Delb JR, Hug R, Hölscher A, Agustin N. 2013. Waldzustandsbericht 2013. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg. Hrsg.:65.Google Scholar
  52. Messier CC, Puettmann KJ, Coates KD. 2013. Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Abingdon: Earthscan from Routledge.Google Scholar
  53. Möhring B, Leefken G, Gutsche C. 2008. Economic valuation of beech forests Ergebnisse angewandter Forschung zur Buche, Beiträge aus der. Ergebnisse angewandter Forschung zur Buche, Beiträge aus der NW-FVA 3:327–43.Google Scholar
  54. Nyssen B, Schmidt UE, Muys B, van der Lei PB, Pyttel P. 2016. The history of introduced tree species in Europe in a nutshell. In: Vítková L, Krumm F, Eds. Introduced tree species in European forests. Opportunities and challenges. Joensuu: European Forest Institute.Google Scholar
  55. Orwig DA, Abrams MD. 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474.CrossRefGoogle Scholar
  56. Pinto PE, Gégout J-C, Hervé J-C, Dhôte J-F. 2008. Respective importance of ecological conditions and stand composition on Abies alba Mill. dominant height growth. For Ecol Manag 255:619–29.CrossRefGoogle Scholar
  57. Podrázský V. 2015. Potential of Douglas-fir as a partial substitute for Norway spruce—review of the newest Czech literature. Beskydy 8:55–8.CrossRefGoogle Scholar
  58. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A. 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712.CrossRefGoogle Scholar
  59. Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle K-H, Pritsch K, Kerner R, Munch J-C. 2014. Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought. From reaction pattern to mechanism. Trees 28:1305–21.CrossRefGoogle Scholar
  60. Pretzsch H, Schutze G, Uhl E. 2013. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol (Stuttg) 15:483–95.CrossRefGoogle Scholar
  61. R Core Team. 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  62. Rais A, van de Kuilen J-WG, Pretzsch H. 2014. Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany. Eur J For Res 133:1043–56.CrossRefGoogle Scholar
  63. Reif A, Brucker von U, Kratzer R, Schmiedinger A, Bauhus J. 2010. Waldbewirtschaftung in zeiten des Klimawandels. Synergien und Konfliktpotenziale zwischen Forstwirtschaft und Naturschutz. Naturschutz und Landschaftsplanung 9:261–66.Google Scholar
  64. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M. 2010. The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–208.CrossRefPubMedGoogle Scholar
  65. Schmalfuss N, Vitikova L. 2016. Douglas fir in Freiburg City Forest: an introduced tree species in the light of multifunctional management objectives. In: Vítková L, Krumm F, Eds. Introduced tree species in European forests. Opportunities and challenges. Joensuu: European Forest Institute.Google Scholar
  66. Sohn JA, Gebhardt T, Ammer C, Bauhus J, Häberle K-H, Matyssek R, Grams TEE. 2013. Mitigation of drought by thinning. Short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). For Ecol Manag 308:188–97.CrossRefGoogle Scholar
  67. Sohn JA, Saha S, Bauhus J. 2016. Potential of forest thinning to mitigate drought stress. A meta-analysis. For Ecol Manag 380:261–73.CrossRefGoogle Scholar
  68. Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K. 2004. Norway spruce conversion. Options and consequences. Leiden: Brill.Google Scholar
  69. Thomas FM, Bögelein R, Werner W. 2015. Interaction between Douglas fir and European beech: investigations in pure and mixed stands = Wechselwirkungen zwischen Douglasie und Rotbuche: Untersucheungen an Rein- und Mischbeständen. Forstarchiv: forstwissenschaftliche Fachzeitschrift 86:83–91.Google Scholar
  70. van der Maaten-Theunissen Marieke, Kahle H-P, van der Maaten Ernst. 2013. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann For Sci 70:185–93.CrossRefGoogle Scholar
  71. van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Muhie Dawud S, de Wandeler H, Domisch T, Finer L, Gessler A, Granier A, Grossiord C, Guyot V, Hattenschwiler S, Jactel H, Jaroszewicz B, Joly F-X, Jucker T, Koricheva J, Milligan H, Muller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielinski D, Fischer M. 2016. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Vitali V, Büntgen U, Bauhus J. 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Change Biol 23:5108–19.CrossRefGoogle Scholar
  73. Wiedemann EEG. 1942. Der gleichaltrige Fichten-Buchen-Mischbestand: Mitteilungen der Preussischen Versuchsanstalt für Waldwirtschaft. Hannover: Schaper.Google Scholar
  74. Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A. 2014. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Change Biol 20:3767–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Forest SciencesUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.Swiss Federal Institute of Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations