, Volume 21, Issue 3, pp 536–550 | Cite as

Carbon Accumulation in Neotropical Dry Secondary Forests: The Roles of Forest Age and Tree Dominance and Diversity

  • Francisco MoraEmail author
  • Víctor J. Jaramillo
  • Radika Bhaskar
  • Mayra Gavito
  • Ilyas Siddique
  • Jarret E. K. Byrnes
  • Patricia Balvanera


Tropical secondary forests are important sinks for atmospheric carbon, yet C uptake and accumulation rates are highly uncertain, and the mechanisms poorly understood. We evaluated the recovery of C stocks in four pools (aboveground biomass, litter, roots and topsoil) during dry forest regrowth by combining a space for time replacement (that is, a chronosequence) with a repeated measurements approach (that is, a resampling). We fit nonlinear models to chronosequence data to test whether forest age could explain differences in C stocks across sites, and to changes in aboveground biomass calculated from resampling over two 3-year periods, to test the predictive potential of forest age. We combined data from both approaches into structural equation models (SEM) to assess forest age and tree community attributes (diversity and dominance) as drivers of C stocks and changes in aboveground biomass. Forest age explained differences across sites in C stocks for aboveground biomass, litter and live roots, but not for the remaining pools. Observed C stock changes in aboveground biomass were poorly predicted by forest age. SEM revealed that aboveground biomass C was consistently and positively related to forest age and to the community weighted mean of maximum tree height (H max CWM), but not to tree diversity. Observed C stock changes were related only to H max CWM, although not consistently across the two 3-year periods. Our results highlight that the chronosequence approach can yield reasonable insights into long-term C accumulation trends, but erroneous estimates of C change over specific time periods. They also show that, in addition to age, dominance by tall statured species, but not tree species diversity, plays a significant role in C accumulation.


carbon cycle carbon uptake coarse woody productivity longitudinal studies secondary succession SEM biomass ratio hypothesis root biomass 



We are grateful to Felipe Arreola for field assistance, and to Leonor Solís from IIES-UNAM for her help in editing figures. The Chamela Biological Station (UNAM) provided facilities and support for the realization of this study. This research was supported by SEMARNAT-CONACYT-0597 and SEP-CONACyT CB-2005-01-51043 Grants to MMR, PAPIIT-UNAM IN290722, PAPIIT-UNAM IN211114 and SEP-CONACYT 2009-129740 Grants to PB, NSF IRFP OISE-0754502 awarded to RB, DGAPA-UNAM postdoctoral fellowship to IS, and by a Ph.D. scholarship from the Mexican National Science and Technology Council (CONACyT) to FM.

Supplementary material

10021_2017_168_MOESM1_ESM.rtf (6.1 mb)
Supplementary material 1 (RTF 6288 kb)


  1. Achard F, Beuchle R, Mayaux P, Stibig H-J et al. 2014. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob Change Biol 20:2540–54.CrossRefGoogle Scholar
  2. Anderson-Teixeira KJ, Wang MMH, McGarvey JC, LeBauer DS. 2016. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob Change Biol 22:1690–709.CrossRefGoogle Scholar
  3. Aryal DR, De Jong BHJ, Ochoa-Gaona S, Mendoza-Vega J, Esparza-Olguin L. 2015. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosyst 103:45–60.CrossRefGoogle Scholar
  4. Ayala-Orozco B, Gavito ME, Mora F, Siddique I, et al. 2017. Resilience of soil properties to land-use change in a tropical dry forest ecosystem. Land Degrad Dev. doi: 10.1002/ldr.2686.Google Scholar
  5. Barajas-Morales J. 1985. Wood structural differences between trees of two tropical forests in Mexico. IAWA Bull 6:355–64.CrossRefGoogle Scholar
  6. Barajas-Morales J. 1987. Wood specific gravity in species from two tropical forests in Mexico. IAWA Bull 8:143–8.CrossRefGoogle Scholar
  7. Becknell JM, Kissing L, Powers JS. 2012. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For Ecol Manag 276:88–95.CrossRefGoogle Scholar
  8. Becknell JM, Powers JS. 2014. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can J For Res 44:604–13.CrossRefGoogle Scholar
  9. Bhaskar R, Dawson TE, Balvanera P. 2014a. Community assembly and functional diversity along succession post-management. Funct Ecol 28:1256–65.CrossRefGoogle Scholar
  10. Bhaskar R, Dawson TE, Balvanera P. 2014b. Data from: community assembly and functional diversity along succession post-management. Dryad Digit Repos. doi: 10.5061/dryad6p9v5.Google Scholar
  11. Bojórquez JA. 2014. Generación de modelos alométricos para cuantificar la biomasa en pie de bosques tropicales secundarios en la región de Chamela, Jalisco, México. M.Sc. Dissertation. Universidad Nacional Autónoma de México.Google Scholar
  12. Bonner MTL, Schmidt S, Shoo LP. 2013. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For Ecol Manage 291:73–86.CrossRefGoogle Scholar
  13. Canty A, Ripley B. 2016. boot: Bootstrap R (S-Plus) functions. R package version 1.3-18.Google Scholar
  14. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE et al. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98:572–92.CrossRefPubMedGoogle Scholar
  15. Castillo A, Magaña A, Pujadas A, Martínez L, Godínez C. 2005. Understanding the interaction of rural people with ecosystems: a case study in a tropical dry forest of Mexico. Ecosystems 8:630–43.CrossRefGoogle Scholar
  16. Chapin FSIII, Matson PA, Vitousek PM. 2011. Principles of terrestrial ecosystem ecology. 2nd edn. New York: Springer.CrossRefGoogle Scholar
  17. Chave J, Muller-Landau HC, Baker TR, Easdale TA et al. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–67.CrossRefPubMedGoogle Scholar
  18. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–90.CrossRefGoogle Scholar
  19. Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F et al. 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2:e1501639.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP et al. 2013. Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–24.CrossRefGoogle Scholar
  21. Conti G, Díaz S. 2013. Plant functional diversity and carbon storage—an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28.CrossRefGoogle Scholar
  22. Costa TL, Sampaio EVSB, Sales MF, Accioly LJO et al. 2014. Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil. Plant Soil 378:113–23.CrossRefGoogle Scholar
  23. Cotler H, Durán E, Siebe C. 2002. Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio. In: Noguera FA, Vega JH, García-Aldrete AN, Quesada M, Eds. Historia Natural de Chamela. México: Instituto de Biología, Universidad Nacional Autónoma de México. p 17–79.Google Scholar
  24. Don A, Schumacher J, Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–70.CrossRefGoogle Scholar
  25. Feldpausch TR, Prates-Clark CDC, Fernandes ECM, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in central Amazonia. Glob Change Biol 13:967–79.CrossRefGoogle Scholar
  26. Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N et al. 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191–201.CrossRefGoogle Scholar
  27. Grace J, Mitchard E, Gloor E. 2014. Perturbations in the carbon budget of the tropics. Glob Change Biol 20:3238–55.CrossRefGoogle Scholar
  28. Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM et al. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3:art73.CrossRefGoogle Scholar
  29. Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–10.CrossRefGoogle Scholar
  30. Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F. 2010. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26:355–70.CrossRefGoogle Scholar
  31. Houghton RA. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55B:378–90.Google Scholar
  32. Intergovernmental Panel on Climate Change. 2006. Agriculture, forestry, and other land use. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, Eds. 2006 IPCC guidelines for national greenhouse gas inventories. Hayama: Institute for Global Environmental Strategies.Google Scholar
  33. Jaramillo VJ, Kauffman JB, Rentería-Rodríguez L, Cummings DL, Ellingson LJ. 2003. Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6:609–29.CrossRefGoogle Scholar
  34. Kauffman JB, Hughes RF, Heider C. 2009. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics. Ecol Appl 19:1211–22.CrossRefPubMedGoogle Scholar
  35. Kenzo T, Ichie T, Hattori D, Kendawang JJ et al. 2010. Changes in above- and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. For Ecol Manag 260:875–82.CrossRefGoogle Scholar
  36. Kissing LB, Powers JS. 2010. Coarse woody debris stocks as a function of forest type and stand age in Costa Rican tropical dry forest: long-lasting legacies of previous land use. J Trop Ecol 26:467–71.CrossRefGoogle Scholar
  37. Laliberté E, Legendre P, Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.Google Scholar
  38. Lasky JR, Uriarte M, Boukili VK, Erickson DL et al. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17:1158–67.CrossRefPubMedGoogle Scholar
  39. Lawrence D. 2005. Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica 37:561–70.CrossRefGoogle Scholar
  40. Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA. 2008. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–31.CrossRefGoogle Scholar
  41. Lebrija-Trejos E, Meave JA, Poorter L, Pérez-García EA, Bongers F. 2010. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspect Plant Ecol Evol Syst 12:267–75.CrossRefGoogle Scholar
  42. Letcher SG, Lasky JR, Chazdon RL, Norden N et al. 2015. Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. J Ecol 103:1276–90.CrossRefGoogle Scholar
  43. Lévesque M, Mclaren KP, Mcdonald MA. 2011. Recovery and dynamics of a primary tropical dry forest in Jamaica, 10 years after human disturbance. For Ecol Manag 262:817–26.CrossRefGoogle Scholar
  44. Lin D, Anderson-Teixeira KJ, Lai J, Mi X et al. 2016. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409:435–46.CrossRefGoogle Scholar
  45. Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M et al. 2013. Succesional changes in functional composition contrast for dry and wet tropical forest. Ecology 94:1211–6.CrossRefPubMedGoogle Scholar
  46. Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F. 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96:1242–52.CrossRefPubMedGoogle Scholar
  47. Malhi Y. 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75.CrossRefGoogle Scholar
  48. Marchetti GM, Drton M, Sadeghi K. 2015. ggm: functions for graphical Markov models. R package version 2.3.
  49. Marin-Spiotta E, Sharma S. 2013. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Ecol Biogeogr 22:105–17.CrossRefGoogle Scholar
  50. Martin PA, Newton AC, Bullock JM. 2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc B 280:20132236.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Martínez-Yrízar A, Sarukhán J, Pérez-Jiménez A, Rincón E et al. 1992. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México. J Trop Ecol 8:87.CrossRefGoogle Scholar
  52. Maza-Villalobos S, Poorter L, Martínez-Ramos M. 2013. Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. Lamb EG, editor. PLoS ONE 8:e82040.CrossRefPubMedPubMedCentralGoogle Scholar
  53. McNicol IM, Berry NJ, Bruun TB et al. 2015. Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos. For Ecol Manag 357:104–16.CrossRefGoogle Scholar
  54. Meister K, Ashton MS, Craven D, Griscom H. 2012. Carbon dynamics of tropical forests. In: Ashton MS, Tyrrell ML, Spalding D, Gentry B, Eds. Managing forest carbon in a changing climate. New York: Springer. p 51–75.CrossRefGoogle Scholar
  55. Miles L, Newton AC, DeFries RS, Ravilious C et al. 2006. A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505.CrossRefGoogle Scholar
  56. Miller PM, Kauffman JB. 1998a. Effects of slash and burn agriculture on species abundance and composition of a tropical deciduous forest. For Ecol Manag 103:191–201.CrossRefGoogle Scholar
  57. Miller PM, Kauffman JB. 1998b. Seedling and sprout response to slash-and-burn agriculture in a tropical deciduous forest. Biotropica 30:538–46.CrossRefGoogle Scholar
  58. Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96.CrossRefGoogle Scholar
  59. Mora F, Martínez-Ramos M, Ibarra-Manríquez G, Pérez-Jiménez A et al. 2015. Testing chronosequences through dynamic approaches: time and site effects on tropical dry forest succession. Biotropica 47:38–48.CrossRefGoogle Scholar
  60. Moura PM, Althoff TD, Oliveira RA, Souto JS et al. 2016. Carbon and nutrient fluxes through litterfall at four succession stages of Caatinga dry forest in Northeastern Brazil. Nutr Cycl Agroecosyst 105:25–38.CrossRefGoogle Scholar
  61. Murty D, Kirschbaum MUF, Mcmurtrie RE, Mcgilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–23.CrossRefGoogle Scholar
  62. Niklas KJ. 2004. Plant allometry: is there a grand unifying theory? Biol Rev Camb Philos Soc 79:871–89.CrossRefPubMedGoogle Scholar
  63. Noguera FA, Vega Rivera JH, García Aldrete AN. 2002. Introducción. In: Noguera FA, Vega Rivera JH, García Aldrete AN, Quesada Avendaño M, Eds. Historia Natural de Chamela. México: Instituto de Biología, Universidad Nacional Autónoma de México. p xv.Google Scholar
  64. Norden N, Angarita HA, Bongers F, Martínez-Ramos M et al. 2015. Successional dynamics in neotropical forests are as uncertain as they are predictable. Proc Natl Acad Sci 112:8013–18.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Oksanen J, Blanchet FG, Kindt R, Legendre P, et al. 2016. vegan: community ecology package. R package version 2.3-0.
  66. Orihuela-Belmonte DE, de Jong BHJ, Mendoza-Vega J, Van der Wal J et al. 2013. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agr Ecosyst Environ 171:72–84.CrossRefGoogle Scholar
  67. Pan Y, Birdsey RA, Fang J, Houghton R et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.CrossRefPubMedGoogle Scholar
  68. Pineda-García F, Paz H, Tinoco-Ojanguren C. 2011. Morphological and physiological differentiation of seedlings between dry and wet habitats in a tropical dry forest. Plant Cell Environ 34:1536–47.CrossRefPubMedGoogle Scholar
  69. Pineda-García F, Paz H, Meinzer FC, Angeles G. 2016. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol 36:208–17.PubMedGoogle Scholar
  70. Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-plus. New York: Springer.CrossRefGoogle Scholar
  71. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team. 2016. nlme: linear and nonlinear mixed effects models. R package version 3.1-128.
  72. Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM et al. 2016. Biomass resilience of neotropical secondary forests. Nature 530:211–14.CrossRefPubMedGoogle Scholar
  73. Powers JJS, Peréz-Aviles D. 2012. Edaphic factors are a more important control on surface fine roots than stand age in secondary tropical dry forests. Biotropica 45:1–9.CrossRefGoogle Scholar
  74. Prado-Junior JA, Schiavini I, Vale VS, Arantes CS et al. 2016. Conservative species drive biomass productivity in tropical dry forests. J Ecol 104:817–27.CrossRefGoogle Scholar
  75. Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–77.CrossRefGoogle Scholar
  76. R Development Core Team. 2016. R: a language and environment for statistical computing, version 3.3.1. Vienna: R Foundation for Statistical Computing.
  77. Romero-Duque LP, Jaramillo VJ, Pérez-Jiménez A. 2007. Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. For Ecol Manag 253:38–47.CrossRefGoogle Scholar
  78. Rozendaal DMA, Chazdon RL, Arreola-Villa F, Balvanera P et al. 2017. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests. Ecosystems 20:340–53.CrossRefGoogle Scholar
  79. Rufin P, Müller H, Pflugmacher D, Hostert P. 2015. Land use intensity trajectories on Amazonian pastures derived from Landsat time series. Int J Appl Earth Obs Geoinf 41:1–10.CrossRefGoogle Scholar
  80. Sánchez-Azofeifa GA, Quesada M, Cuevas-Reyes P, Castillo A, Sánchez-Montoya G. 2009. Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. For Ecol Manag 258:907–12.CrossRefGoogle Scholar
  81. Sato T, Saito M, Ramírez D, Pérez de Molas LF et al. 2015. Development of allometric equations for tree biomass in forest ecosystems in paraguay. Jpn Agric Res Q 49:281–91.CrossRefGoogle Scholar
  82. Saynes V, Hidalgo C, Etchevers J, Campo J. 2005. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl Soil Ecol 29:282–9.CrossRefGoogle Scholar
  83. Shipley B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–8.CrossRefPubMedGoogle Scholar
  84. Sierra CA, Del Valle JI, Restrepo HI. 2012. Total carbon accumulation in a tropical forest landscape. Carbon Balance Manag 7:12.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Silver W, Miya R. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–19.CrossRefPubMedGoogle Scholar
  86. Slik JWF, Paoli G, McGuire K, Amaral I et al. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–71.CrossRefGoogle Scholar
  87. Sloan S, Goosem M, Laurance SG. 2016. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc Ecol 31:601–18.CrossRefGoogle Scholar
  88. Tello C. 2012. La transformación del paisaje. Colonización, desarrollo y conservación de la Costalegre de Jalisco, en la región de Cuixmala y Careyes (1943–1993). México (DF): Universidad Nacional Autónoma de México y El Colegio de Jalisco.Google Scholar
  89. Trilleras JM. 2008. Análisis socio-ecológico del manejo, degradación y restauración del bosque tropical seco de la región de Chamela-Cuixmala, México. M.Sc. Dissertation. Universidad Nacional Autónoma de México.Google Scholar
  90. Trilleras JM, Jaramillo VJ, Vega EV, Balvanera P. 2015. Effects of livestock management on the supply of ecosystem services in pastures in a tropical dry region of western Mexico. Agr Ecosyst Environ 211:133–44.CrossRefGoogle Scholar
  91. Vargas R, Allen MF, Allen EB. 2008. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Change Biol 14:109–24.Google Scholar
  92. van Vliet N, Mertz O, Heinimann A, Langanke T et al. 2012. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Glob Environ Change 22:418–29.CrossRefGoogle Scholar
  93. Wandelli EV, Fearnside PM. 2015. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. For Ecol Manag 347:140–8.CrossRefGoogle Scholar
  94. Wright S. 2010. The future of tropical forests. Ann N Y Acad Sci 1195:1–27.CrossRefPubMedGoogle Scholar
  95. Yang Y, Luo Y, Finzi AC. 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol 190:977–89.CrossRefPubMedGoogle Scholar
  96. Zarin DJ, Davidson EA, Brondizio E, Vieira ICG et al. 2005. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front Ecol Environ 3:365–9.CrossRefGoogle Scholar
  97. Zeri M, Sá LDA, Manzi AO, Araú AC et al. 2014. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia. PLoS ONE 9:e88130.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.College of Design, Engineering, and CommercePhiladelphia UniversityPhiladelphiaUSA
  3. 3.Departamento de Fitotecnia, Centro de Ciências AgráriasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Department of BiologyUniversity of Massachusetts BostonBostonUSA

Personalised recommendations