Skip to main content
Log in

Simulated Atmospheric Nitrogen Deposition Alters Decomposition of Ephemeral Roots

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Roots concentrated on the smallest distal branching orders have short life spans and thus dominate root mortality, and may contribute predominately to plant carbon and nutrient transfer into soil. Yet the effects of nitrogen (N) enrichment on decomposition of the finest root branching orders have not yet been examined. Resolving such N effects is critical for predicting the ecosystem consequences of increased anthropogenic N deposition. The first four root orders were separated into two classes: first- and second-order roots; third- and fourth-order roots. We studied the effects of N addition on decomposition of different root order classes in four temperate tree species over 4 years. Asymptotic decay models best fit the decomposition and allowed us to examine effects of N on initial versus later stages of decomposition separately. Very early in decomposition, N fertilization stimulated decomposition rates in higher-order roots, but had no effects on initial rates of decomposition in lower-order roots. In contrast, later in decomposition, N fertilization inhibited decomposition, ultimately resulting in a larger, slowly decomposing fraction in both lower-order and higher-order roots. Inhibitory effects of N addition on lignin-degrading enzyme activity might be an important mechanism explaining the negative effects of N on decomposition here. This study highlights the importance of long-term studies for understanding N effects on decomposition, and suggests that contrasting effects of N on different decomposition processes and carbon pools should be widely considered in biogeochemical models. Furthermore, the inhibitory effects of elevated atmospheric N deposition on decomposition of lower-order roots suggest that these roots may provide a critical mechanism of carbon and nutrient retention in soil because of their rapid input via root mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–49.

    Article  Google Scholar 

  • Aerts R, van Logtestijn RSP, Karlsson PS. 2006. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia 146:652–8.

    Article  CAS  PubMed  Google Scholar 

  • Ågren GI, Bosatta E, Magill AH. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–8.

    Article  Google Scholar 

  • Ågren GI, Hyvönen R, Berglund SL, Hobbie SE. 2013. Estimating the critical N: C from litter decomposition data and its relation to soil organic matter stoichiometry. Soil Biol Biochem 67:312–18.

    Article  Google Scholar 

  • Almin KE, Eriksson KE. 1967. Enzymic degradation of polymers. I. Viscometric method for the determination of enzymic activity. Biochem Biophys Acta 139:238–47.

    CAS  PubMed  Google Scholar 

  • Bao SD. 2000. The method of the soil and agriculture chemical analysis. Beijing: China Agriculture Press.

    Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ. 1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–60.

    Article  Google Scholar 

  • Berg B. 1984. Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol Biochem 16:609–17.

    Article  CAS  Google Scholar 

  • Berg B. 1986. Nutrient release from litter and humus in coniferous forest soils–a mini review. Scand J For Res 1:359–370.

    Article  Google Scholar 

  • Berg B. 2000. Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands. Can J For Res 30:122–35.

    Article  CAS  Google Scholar 

  • Berg B et al. 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100:57–73.

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C. 2003. Plant litter-decomposition, humus formation, carbon sequestration. Berlin: Springer.

    Google Scholar 

  • Berg B, Tamm CO. 1991. Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Norway spruce (Picea abies). Scand J For Res 6:305–21.

    Article  Google Scholar 

  • Berg B, Tamm CO. 1994. Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. II. Nutrient concentrations in decomposing Picea abies needle litter. Scand J For Res 9:99–105.

    Article  Google Scholar 

  • Berg B, Matzner E. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25.

    Article  CAS  Google Scholar 

  • Berg B, Ekbohm G. 1991. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–56.

    Article  Google Scholar 

  • Berg B, Wessen B, Eckbom G. 1982. Nitrogen level and decomposition in Scots pine needle litter. Oikos 38:291–6.

    Article  Google Scholar 

  • Berg B, Eckbom G, Johansson MB, McClaugherty C, Rutigliano F, Virzo De Santo A. 1996. Maximum decomposition limits of forest floor litter types: a synthesis. Can J Bot 74:659–72.

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–65.

    Article  Google Scholar 

  • Comas LH, Eissenstat DM, Lakso AN. 2000. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol 147:171–8.

    Article  CAS  Google Scholar 

  • Compton JE, Watrud LS, Porteous LA, DeGrood S. 2004. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard Forest. For Ecol Manage 196:143–58.

    Article  Google Scholar 

  • Davidson EA, Chorover J, Dail DB. 2003. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Glob Change Biol 9:228–36.

    Article  Google Scholar 

  • Dix NJ, Webster J. 1995. Fungal ecology. New York: Chapman & Hall.

    Book  Google Scholar 

  • Dornbush ME, Isenhart TM, Raich J. 2002. Quantifying fine root decomposition: an alternative to buried litterbags. Ecology 83:2985–90.

    Article  Google Scholar 

  • Eissenstat DM, Volder A. 2005. The efficiency of nutrient acquisition over the life of a root. In: BassiriRad H, Ed. Nutrient acquisition by plants: an ecological perspective. New York: Springer. p 185–220.

    Chapter  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL. 2000. Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42.

    Article  CAS  Google Scholar 

  • Fan P, Guo D. 2010. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163:509–15.

    Article  PubMed  Google Scholar 

  • Fisk MC, Fahey TJ, Sobieraj JH, Costello AM. 2011. Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil 341:279–93.

    Article  CAS  Google Scholar 

  • Fog K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–62.

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent J, Simpson RT. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in a forest ecosystem. For Ecol Manage 196:159–71.

    Article  Google Scholar 

  • Galloway JN et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31.

    Article  Google Scholar 

  • Gerber S, Hedin LO, Oppenheimer M, Pacala SW, Shevliakova E. 2010. Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochem Cycles 24:GB1001. doi:10.1029/2008GB003336.

    Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM. 2011. Decomposition of the finest root branching orders: linking carbon and nutrient dynamics belowground to fine root function and structure. Ecol Monogr 81:89–102.

    Article  Google Scholar 

  • Gong ZT, Chen ZC, Luo GB, Zhang GL, Zhao WJ. 1999. Soil reference with Chinese soil taxonomy. Soils 31:57–63.

    Google Scholar 

  • Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL. 2008a. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–83.

    Article  PubMed  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ. 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–7.

    Article  PubMed  Google Scholar 

  • Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ. 2008b. Endogenous and exogenous controls of root lifespan, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–45.

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Bracht Jørgensen H. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–63.

    Article  Google Scholar 

  • Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD. 2000. Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems 3:57–69.

    Article  CAS  Google Scholar 

  • Hobbie SE. 1992. Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–9.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.

    Article  Google Scholar 

  • Hobbie SE. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early stages of decomposition. Ecosystems 8:644–56.

    Article  CAS  Google Scholar 

  • Hobbie SE. 2008. Nitrogen effects on litter decomposition: a five-year experiment in eight temperate grassland and forest sites. Ecology 89:2633–44.

    Article  PubMed  Google Scholar 

  • Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–77.

    Article  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. 2010. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–13.

    Article  PubMed  Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. 2006. Species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–97.

    Article  PubMed  Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P. 2012. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405.

    Article  Google Scholar 

  • IPCC, Ed. 2007. Climate change 2007: the physical science basis. Cambridge: Cambridge University Press.

  • Jackson RB, Mooney HA, Schulze E-D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janssens IA et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–22.

    Article  CAS  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg L. 2009. Effects of long-term nitrogen additions on soil and litter microbial enzyme activity in eight forested and grassland sites: implications for litter and SOM decomposition. Ecosystems 12:1–15.

    Article  CAS  Google Scholar 

  • Knicker H, Ludemann H-D, Haider K. 1997. Incorporation studies of NH4 + during incubation of organic residues by 15N-CPMAS-NMR-spectroscopy. Eur J Soil Sci 28:431–41.

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–7.

    Article  Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–72.

    Article  PubMed  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL. 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305.

    Article  CAS  Google Scholar 

  • Lamarque JF et al. 2005. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J Geophys Res 1984–2012:110.

    Google Scholar 

  • Li A, Fahey TJ, Pawlowska TE, Fisk MC, Burtis J. 2015. Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol Biochem 83:76–83.

    Article  CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321:684–6.

    Article  CAS  PubMed  Google Scholar 

  • McClaugherty CA, Aber JD, Mellilo JM. 1984. Decomposition dynamics of fine roots in forested ecosystems. Oikos 42:378–86.

    Article  CAS  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM. 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–31.

    Article  Google Scholar 

  • Moorehead DL, Sinsabaugh RL. 2006. A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–74.

    Article  Google Scholar 

  • Nömmik H, Vahtras K. 1982. Retention and fixation of ammonium and ammonia in soils. In: Stevenson FJ, Ed. Nitrogen in agricultural soils. Madison, WI: ASA-CSSA-SSSA. p 123–71.

    Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Carol Adair E, Brandt LA, Hart SC, Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–4.

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Fahey TJ. 2007. Fertilization effects on fine root biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol 176(3):655–64.

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL. 2002. Fine root architecture of nine North American trees. Ecol Monogr 72:293–309.

    Article  Google Scholar 

  • Prescott CE. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–49.

    Article  CAS  Google Scholar 

  • Resendes ML, Bryla DR, Eissenstat DM. 2008. Early events in the life of apple roots: variation in root growth rate is linked to mycorrhizal and nonmycorrhizal fungal colonization. Plant Soil 313:175–86.

    Article  CAS  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen MF, Maurer GE. 2003. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–62.

    Article  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A. 1990. A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–71.

    Article  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–15.

    Article  CAS  Google Scholar 

  • Seifter S, Dayton S, Novic B, Muntwyler E. 1950. The estimation of glycogen with the anthrone reagent. Arch Biochem 25:191–200.

    CAS  PubMed  Google Scholar 

  • Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–19.

    Article  Google Scholar 

  • Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Linkins AE. 1990. Enzymic and chemical analysis of particulate organic matter from a boreal river. Freshw Biol 23:301–9.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1–13.

    Article  Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR. 2005. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–15.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA. 2002. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L. 1992. Wood decomposition over a 1st-order watershed—mass-loss as a function of lignocellulase activity. Soil Biol Biochem 24:743–9.

    Article  CAS  Google Scholar 

  • Stevenson FJ. 1994. Humus chemistry: genesis, composition, and reactions. 2nd edn. New York: Wiley.

    Google Scholar 

  • Sun T, Mao Z, Han Y. 2013. Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant Soil 372:445–58.

    Article  CAS  Google Scholar 

  • Sun T, Mao ZJ, Dong LL, Hou LL, Song Y, Wang XW. 2012. Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores. Plant Soil 366:633–46.

    Article  Google Scholar 

  • Valenzuela-Estrada LR, Richards JH, Diaz A, Eissensat DM. 2009. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions. J Exp Bot 60:1241–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM. 2008. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506–14.

    Article  PubMed  Google Scholar 

  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Watanabe T, Osaki M, Tadano T. 1998. Effects of nitrogen source and aluminum on growth of tropical tree seedlings adapted to low pH soils. Soil Sci Plant Nutr 44:655–66.

    Article  CAS  Google Scholar 

  • Weider RK, Lang GE. 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–42.

    Article  Google Scholar 

  • Wells CE, Eissenstat DM. 2001. Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–92.

    Article  Google Scholar 

  • Xia M, Guo D, Pregitzer KS. 2010. Ephemeral root modules in Fraxinus mandshurica. New Phytol 188:1065–74.

    Article  PubMed  Google Scholar 

  • Xiong Y, Fan P, Fu S, Zeng H, Guo D. 2012. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees. Plant Soil 363:19–31.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Xinghuan Li, Ruipeng Liu, Fuchen Zang, Yuan Song, Juan Zhao, Na Li, Hailiang Lv, Yingying Han, Wei Huang, Yiyang Ding, Zhaopeng Geng, Hongguang Zhang, Xinghai Guan, Lingcai Gu, Guimei Jia, Lingling Hou, Kun Guo, and the many undergraduates at the Northeast Forestry University for their assistance in the field and laboratory. The funding for this research was supported by National Natural Science Foundation of China (No. 31270494). We also acknowledge two anonymous reviewers and subject-matter editor Lovett Gary for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Mao.

Additional information

Author Contributions

ZJM and TS conceived and designed the study; TS and LLD performed the research; ZJM and TS analyzed the data; ZJM and TS wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Dong, L. & Mao, Z. Simulated Atmospheric Nitrogen Deposition Alters Decomposition of Ephemeral Roots. Ecosystems 18, 1240–1252 (2015). https://doi.org/10.1007/s10021-015-9895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9895-4

Keywords

Navigation