Skip to main content
Log in

Fire Severity in a Large Fire in a Pinus pinaster Forest is Highly Predictable from Burning Conditions, Stand Structure, and Topography

  • Published:
Ecosystems Aims and scope Submit manuscript

A Notice of Disputed Authorship to this article was published on 06 June 2018

Abstract

Identifying what factors control fire severity in large fires is critical for understanding fire impacts and planning pre- and post-fire management. Here, we determined the role of pre-fire stand structure, directional topography, and burning conditions on fire severity in a large fire (12,697 ha) in Central Spain that burned a Pinus pinaster forest on July 2005. Fire severity was estimated using RdNBR based on Landsat 5 TM images. Forest stand structure was reconstructed by systematically sampling the burned area (n = 236). Burning conditions were established using weather information and a map of fire progression, based on which fire rate of spread and propagation direction were calculated. Topographic features in the direction of the fire-front were derived from a digital elevation model. Boosted regression tree (BRT) analysis was employed to relate each group of variables or the entire set to RdNBR. Fire severity was best explained by burning conditions (cross-validation correlation [CVC] 0.56), followed by pre-fire stand structure (CVC 0.34), and directional topography (CVC 0.17). Combining the three sets of variables, CVC increased to 0.71. Higher fire severity occurred in areas burning upslope, with high fire rate of spread, with heterogeneous and dense stands of P. pinaster and Quercus pyrenaica in the understory, receiving high solar radiation, among other characteristics. Fire severity was the result of interactive relationships between burning conditions, pre-fire stand structure, and directional topography. Thus, determining factors controlling fire severity from static stand structure or topography, as is often done, may not be appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alexander ME, Cruz MG. 2006. Evaluating a model for predicting active crown fire rate of spread using wildfire observations. Can J For Res 36:3015–28.

    Article  Google Scholar 

  • Alexander JD, Seavy NE, Ralph CJ, Hogoboom B. 2006. Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California. Int J Wildl Fire 15:237–45.

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci J 24:43–69.

    Google Scholar 

  • Bigler C, Kulakowski D, Veblen TT. 2005. Multiple disturbance interactions and drought influence fire severity in rocky mountain subalpine forests. Ecology 86:3018–29.

    Article  Google Scholar 

  • Birch DS, Morgan P, Kolden CA, Hudak AT, Smith AM. 2014. Is proportion burned severely related to daily area burned? Environ Res Lett 9:064011.

    Article  Google Scholar 

  • Bivand R. 2014. spdep: spatial dependence: weighting schemes, statistics and models. R package version 0.5-71. http://CRAN.R-project.org/package=spdep.

  • Boer MM, Sadler RJ, Bradstock RA, Gill AM, Grierson PF. 2008. Spatial scale invariance of southern Australian forest fires mirrors the scaling behavior of fire-driving weather events. Landsc Ecol 23:899–913.

    Google Scholar 

  • Broncano MJ, Retana J. 2004. Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin. Int J Wildl Fire 13:209–16.

    Article  Google Scholar 

  • Carslaw DC, Taylor PJ. 2009. Analysis of air pollution data at a mixed source location using boosted regression trees. Atmos Environ 43:3563–70.

    Article  CAS  Google Scholar 

  • Catchpole EA, Alexander ME, Gill AM. 1992. Elliptical-fire perimeter- and area-intensity distributions. Can J For Res 22:968–72. doi:10.1139/X92-129.

    Article  Google Scholar 

  • Chafer CJ, Noonan M, Macnaught E. 2004. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int J Wildl Fire 13:227–40.

    Article  Google Scholar 

  • Collins BM, Kelly M, Wagtendonk JW, Stephens SL. 2006. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landsc Ecol 22:545–57.

    Article  Google Scholar 

  • De Santis A, Chuvieco E. 2009. GeoCBI: a modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens Environ 113:554–62.

    Article  Google Scholar 

  • Dillon GK, Holden ZA, Morgan P, Crimmins MA, Heyerdahl EK, Luce CH. 2011. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2:art130.

  • Elith J, Leathwick J, Hastie T. 2008. A working guide to boosted regression trees. J Anim Ecol 77:802–13.

    Article  CAS  PubMed  Google Scholar 

  • Eskelson BN, Anderson PD, Hagar JC, Temesgen H. 2011. Geostatistical modeling of riparian forest microclimate and its implications for sampling. Can J For Res 41:974–85.

    Article  Google Scholar 

  • Fernandes PAM, Loureiro CA, Botelho HS. 2004. Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann For Sci 61:1–16.

    Article  Google Scholar 

  • Finney MA. 2001. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47:219–28.

    Google Scholar 

  • Forthofer 2007. Modelling wind in complex terrain for use in fire spread prediction. Ph.D. thesis, Colorado State University.

  • French NHF, Kasischke ES, Hall RJ, Murphy KA, Verbyla DL, Hoy EE, Allen JL. 2008. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. Int J Wildl Fire 17:443–62.

    Article  Google Scholar 

  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Statist 29:1189–232.

    Article  Google Scholar 

  • Fulé PZ, Waltz AE, Covington WW, Heinlein TA. 2001. Measuring forest restoration effectiveness in reducing hazardous fuels. J For 99:24–9.

    Google Scholar 

  • Gimeno-García E, Andreu V, Rubio JL. 2000. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. Eur J Soil Sci 51:201–10.

    Article  Google Scholar 

  • Grillo F, Castellnou M, Molina D, Martínez E, Díaz D. 2008. Anáisis del incendio Forestal: Planificación de la extinción. Granada: AIFEMA.

  • Hastie T, Tibshirani R, Friedman J. 2009. Elements of statistical learning: data mining, inference, and prediction. 2nd edn. New York: Springer.

    Book  Google Scholar 

  • Holden ZA, Morgan P, Evans JS. 2009. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. For Ecol Manag 258:2399–406.

    Article  Google Scholar 

  • Jenness. 2005. http://www.jennessent.com/downloads/topographic_analysis_online.pdf.

  • Keeley JE. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildl Fire 18:116–26.

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ, Morais M. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829–32.

    Article  CAS  PubMed  Google Scholar 

  • Keeley JE, Brennan T, Pfaff AH. 2008. Fire severity and ecosystem responses following crown fires in California shrublands. Ecol Appl 18:1530–46.

    Article  PubMed  Google Scholar 

  • Knapp EE, Keeley JE. 2006. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. Int J Wildl Fire 15:37–45.

    Article  Google Scholar 

  • Knudby A, LeDrew E, Brenning A. 2010. Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens Environ 114:1230–41.

    Article  Google Scholar 

  • Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC. 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildl Fire 15:319–45.

    Article  Google Scholar 

  • Lozano FJ, Suárez-Seoane S, de Luis-Calabuig E. 2012. Does fire regime affect both temporal patterns and drivers of vegetation recovery in a resilient Mediterranean landscape? A remote sensing approach at two observation levels. Int J Wildl Fire 21:666–79.

    Article  Google Scholar 

  • Manzano-Agugliaro F, Pérez-Aranda J, De La Cruz JL. 2014. Methodology to obtain isochrones from large wildfires. Int J Wildl Fire . doi:10.1071/WF13166.

    Google Scholar 

  • Marques S, Borges JG, Garcia-Gonzalo J, Moreira F, Carreiras JMB, Oliveira MM, Cantarinha A, Botequim B, Pereira JMC. 2011. Characterization of wildfires in Portugal. Eur J For Res 130:775–84.

    Article  Google Scholar 

  • Miller JD, Thode AE. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens Environ 109:66–80.

    Article  Google Scholar 

  • Miller JD, Safford HD, Crimmins M, Thode AE. 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 12:16–32.

    Article  Google Scholar 

  • Miller JD, Skinner CN, Safford HD, Knapp EE, Ramirez CM. 2012. Trends and causes of severity, size, and number of fires in northwestern California, USA. Ecol Appl 22:184–203.

    Article  CAS  PubMed  Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M. 2005. Producción de biomasa y fijación de CO2 por los bosques españoles. Madrid: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.

  • Moreno JM, Oechel WC. 1989. A simple method for estimating fire intensity after a burn in California chaparral. Acta Oecol 10:57–68.

    Google Scholar 

  • Moreno JM, Zavala G. 2005. Informe sobre las condiciones de peligro meteorológico del incendio de Riba de Saelices (Guadalajara). Informe presentado a la Comisión de las Cortes de Castilla-La Mancha sobre el Incendio de Ribas de Saelices, Guadalajara, Agosto de 2005. Cortes de Castilla-La Mancha, Toledo.

  • Moreno JM, Vázquez A, Vélez R. 1998. Recent history of forest fires in Spain. In: Moreno JM, Ed. Large forest fires. Leiden: Backhuys. p 159–85.

    Google Scholar 

  • Odion DC, Frost EJ, Strittholt JR, Jiang H, Dellasala DA, Moritz MA. 2004. Patterns of fire severity and forest conditions in the western Klamath Mountains, California. Conserv Biol 18:927–36.

    Article  Google Scholar 

  • Oliveras I, Gracia M, Moré G, Retana J. 2009. Factors influencing the pattern of fire severities in a large wildfire under extreme meteorological conditions in the Mediterranean basin. Int J Wildl Fire 18:755–64.

    Article  Google Scholar 

  • Ordóñez JL, Retana J, Espelta JM. 2005. Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For Ecol Manag 206:109–17.

    Article  Google Scholar 

  • Parisien MA, Parks SA, Krawchuk MA, Flannigan MD, Bowman LM, Moritz MA. 2011. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980–2005. Ecol Appl 21:789–805.

    Article  PubMed  Google Scholar 

  • Pausas JG, Llovet J, Rodrigo A, Vallejo R. 2009. Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildl Fire 17:713–23.

    Article  Google Scholar 

  • Pollet J, Omi PN. 2002. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int J Wildl Fire 11:1–10.

    Article  Google Scholar 

  • R Core Team. 2012. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.

  • Ridgeway G. 2007. gbm: generalized boosted regression models. R package version 1.6-3. http://www.i-pensieri.com/gregr/gbm.shtml.

  • Rothermel RC. 1972. A mathematical model for predicting fire spread in wildland fuels. Washington, DC: Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture. 40

    Google Scholar 

  • Rothermel RC, Mutch RW. 1986. Behavior of the life-threatening butte fire: august 27–29, 1985. Fire Manag Notes 47:14–24.

    Google Scholar 

  • Ryan KC. 2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn 36:13–39.

    Article  Google Scholar 

  • Safford H, Schmidt D, Carlson C. 2009. Effects of fuel treatments on fire severity in an area of wildland–urban interface, Angora Fire, Lake Tahoe Basin, California. For Ecol Manag 258:773–87.

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Romme WH. 2004. The interaction of fire, fuels, and climate across rocky mountain forests. Bioscience 54:661–76.

    Article  Google Scholar 

  • Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, Harrington M, Keeley JE, Knapp EE, McIver JD, Metlen K, Skinner CN, Youngblood A. 2009. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol Appl 19:305–20.

    Article  PubMed  Google Scholar 

  • Thompson JR, Spies TA. 2009. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For Ecol Manag 258:1684–94.

    Article  Google Scholar 

  • Thompson JR, Spies TA, Ganio LM. 2007. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc Natl Acad Sci USA 104:10743–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner MG, Hargrove WW, Gardner RH, Romme WH. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–42.

    Article  Google Scholar 

  • van Wagner CE. 1973. Height of crown scorch in forest fires. Can J For Res 3:373–8. doi:10.1139/X73-055.

    Article  Google Scholar 

  • Veldkamp A, Lambin EF. 2001. Predicting land-use change. Agric Ecosyst Environ 85:1–6.

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–3.

    Article  CAS  PubMed  Google Scholar 

  • Williams GJ, Aeby GS, Cowie RO, Davy SK. 2010. Predictive modeling of coral disease distribution within a reef system. PLoS ONE 5:e9264.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by the FP7 of the EC (FUME Project, GA 243888), Caja Guadalajara (CONV080174), and Junta de Castilla-La Mancha (PREG07-002). We thank A. Chavarría and M. Aguilar Larrucea (Junta de Comunidades de Castilla-La Mancha) for facilitating the isochrones map of the Riba de Saelices fire; L. Díaz Guerra, R. G. Mateo, C. Morales del Molino, and C. Recio for their assistance with field sampling; and to Lara A. Arroyo for her comments on earlier versions of this work. We thank P. Morgan for her constructive review and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olga Viedma or José M. Moreno.

Additional information

Author contributions

Olga Viedma: Performed research, analyzed data, and wrote the paper. Juan Quesada: Analyzed data and did the field campaign. Ivan Torres: Performed research and analyzed data. Angela De Santis: Performed research and analyzed data. Jose M. Moreno: Conceived and designed the study and wrote the paper

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viedma, O., Quesada, J., Torres, I. et al. Fire Severity in a Large Fire in a Pinus pinaster Forest is Highly Predictable from Burning Conditions, Stand Structure, and Topography. Ecosystems 18, 237–250 (2015). https://doi.org/10.1007/s10021-014-9824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9824-y

Keywords

Navigation