Historical and futuristic perspectives of robotics

Abstract

According to the progress and applications of robots, we can categorize them into three different generations: industrial robots, autonomous mobile robots, and social robots. At the first section, the significant characteristics, structures, and control methods of industrial robots have been introduced. In the next, autonomous mobile robots, their mobile attributes and the typical navigation methods have been briefly presented. Following that part, we investigate social robots as the third generation of robots. The applications of social robots and their promotion process is also a subject of our study. Finally, try to envisage future trends in the field robotics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Nocks L (2007) The robot: the life story of a technology. Greenwood Publishing Group, Santa Barbara

    Google Scholar 

  2. 2.

    Dauth W, Findeisen S, Südekum J, Woessner N (2017) German robots-the impact of industrial robots on workers, CEPR Discussion Papers 12306

  3. 3.

    Bahrin MAK, Othman MF, Azli NN, Talib MF (2016) Industry 4.0: A review on industrial automation and robotic. Jurnal Teknologi 78(6–13):137–143

    Google Scholar 

  4. 4.

    Iqbal J, Islam RU, Abbas SZ, Khan AA, Ajwad SA (2016) Automating industrial tasks through mechatronic systems–A review of robotics in industrial perspective. Tehnički vjesnik 23(3):917–924

    Google Scholar 

  5. 5.

    Siciliano B, Khatib O (2016) Springer handbook of robotics. Springer, Berlin

    Google Scholar 

  6. 6.

    Huang H, Zhou L, Chen XQ, Gong ZM (2003) SMART robotic system for 3D profile turbine vane airfoil repair. Int J Adv Manuf Technol 21(4):275–283

    Google Scholar 

  7. 7.

    Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robotic manipulators. World Scientific, London

    Google Scholar 

  8. 8.

    Ge SS, Hang CC, Lee TH, Zhang T (2013) Stable adaptive neural network control. Springer Science & Business Media, Berlin

    Google Scholar 

  9. 9.

    Turek F (2011) Machine vision fundamentals, How to make robots. NASA Tech Briefs 35(6):60–62

    Google Scholar 

  10. 10.

    Chawda V, Niemeyer G (2017) “Toward controlling a KUKA LBR IIWA for interactive tracking,” in Proceedings - IEEE International Conference on Robotics and Automation, Singapore

  11. 11.

    Kirgis, F-P, Katsos P, Kohlmaier M (2016) Collaborative Robotics, in Robotic Fabrication in Architecture, Art and Design 2016. Springer, p. 448–453

  12. 12.

    Agravante DJ, Cherubini A, Bussy A, Gergondet P, Kheddar A (2014) “Collaborative human-humanoid carrying using vision and haptic sensing,” in Proceedings - IEEE International Conference on Robotics and Automation, IEEE, Hong Kong

  13. 13.

    Solanes JE, Gracia L, Munoz-Benavent P, Miro JV, Carmichael MG, Tornero J (2018) Human-robot collaboration for safe object transportation using force feedback. Robotics Autonom Syst 1(107):196–208

    Google Scholar 

  14. 14.

    Abraham AT, Ge SS, Tao PY (2009) A topological approach of path planning for autonomous robot navigation in dynamic environments. in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, IEEE, St. Louis

  15. 15.

    Li Z, Ge SS (2016) Fundamentals in modeling and control of mobile manipulators. CRC Press, Boca Raton

    Google Scholar 

  16. 16.

    Ge SS, Lewis FL (2006) Autonomous mobile robots: sensing, control, decision making and applications. CRC Press, Boca Raton

    Google Scholar 

  17. 17.

    Pandey A, Pandey S, Parhi DR (2017) Mobile robot navigation and obstacle avoidance techniques: A review. Int Rob Auto J 2(3):00022

    Google Scholar 

  18. 18.

    Agunbiade O, Zuva T (2018) A Review: Simultaneous Localization and Mapping in Application to Autonomous Robot. https://doi.org/10.20944/preprints201805.0293.v1

    Article  Google Scholar 

  19. 19.

    Zafar MN, Mohanta JC (2018) Methodology for path planning and optimization of mobile robots: a review. Procedia Computer Sci 133:141–152

    Google Scholar 

  20. 20.

    Dey S, Mukherjee A (2016) Robotic slam: a review from fog computing and mobile edge computing perspective. in ACM International Conference Proceeding Series, ACM, San Francisco

  21. 21.

    Ge SS, Zhang Q, Abraham AT, Rebsamen B (2011) Simultaneous Path Planning and Topological Mapping (SP(2)ATM) for environment exploration and goal oriented navigation. Robotics Autonom Syst 59(3–4):228–242

    Google Scholar 

  22. 22.

    Ge SS, Lai X, Mamun AA (2005) Boundary following and globally convergent path planning using instant goals. IEEE Trans Syst Man Cybern 35(2):240–254

    Google Scholar 

  23. 23.

    Ge SS, Lai X-C, Al Mamun A (2007) Sensor-based path planning for nonholonomic mobile robots subject to dynamic constraints. Robot Autonom Syst 55(7):513–526

    Google Scholar 

  24. 24.

    Li M, Jiang R, Ge SS, Lee TH (2018) Role playing learning for socially concomitant mobile robot navigation. CAAI Trans Intell Technol 3(1):49–58

    Google Scholar 

  25. 25.

    Ge SS, Cui YJ (2000) New potential functions for mobile robot path planning. IEEE Transa Robot Autom 16(5):615–620

    Google Scholar 

  26. 26.

    Ge SS, Cui YJ (2002) Dynamic motion planning for mobile robots using potential field method. Autonomous Robots 13(3):207–222

    MATH  Google Scholar 

  27. 27.

    RoboCup Federation, https://www.robocup.org/, 1996

  28. 28.

    The Grand Challenge for Autonomous Vehicles – Darpa, https://www.darpa.mil, 2004

  29. 29.

    Amazon Picking Challenge-The Future of Robotics,https://amazonpickingchallenge.org/, 2017

  30. 30.

    Chitta S, Sucan I, Cousins S (2012) Moveit![ros topics]. IEEE Robot Autom Magazine 19(1):18–19

    Google Scholar 

  31. 31.

    Miller AT, Allen PK (2004) Graspit! a versatile simulator for robotic grasping. IEEE Robot Autom Magazine 11(4):110–122

    Google Scholar 

  32. 32.

    Belpaeme T, Kennedy J, Ramachandran A, Scassellati B, Tanaka F (2018) Social robots for education: A review. Sci Robot 3(21): eaat5954

  33. 33.

    Breazeal C (2017) Social robots: from research to commercialization. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction., ACM, Vienna

  34. 34.

    Ge SS (2007) Social robotics: Integrating advances in engineering and computer science. In The 4th annual international conference organized by Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology, Chiang Rai

  35. 35.

    Kachouie R, Sedighadeli S, Khosla R, Chu MT (2014) Socially assistive robots in elderly care: a mixed-method systematic literature review. Int J Human Computer Inter 30(5):369–393

    Google Scholar 

  36. 36.

    Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, Pioggia G (2016) Autism and social robotics: A systematic review. Autism Res 9(2):165–183

    Google Scholar 

  37. 37.

    Góngora Alonso S, Hamrioui S, de la Torre Díez I, Motta Cruz E, López-Coronado M, Franco M (2018) Social robots for people with aging and dementia: a systematic review of literature. Telemed e-Health 25(7):533–540

    Google Scholar 

  38. 38.

    Ge SS, Safizadeh MR, Li Y (2011) Mechanical design of social robot Nancy in 2011 IEEE/SICE International Symposium on System Integration (SII. 2011, IEEE, Kyoto)

  39. 39.

    Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid in 2009 IEEE International Conference on Robotics and Automation,IEEE, Kobe

  40. 40.

    Kozima H, Michalowski MP, Nakagawa C (2009) Keepon. Int J Social Robotics 1(1):3–18

    Google Scholar 

  41. 41.

    Su Y, Ge SS (2017) Role-Oriented Designing: A Methodology to Designing for Appearance and Interaction Ways of Customized Professional Social Robots. International Conference on Social Robotics: Springer International Publishing, Cham

  42. 42.

    Foong YM, Liu X, Ge SS, Guo J (2016) Mechanical design of christine, the social robot for the service industry. Springer International Publishing, Cham

    Google Scholar 

  43. 43.

    Cabibihan J-J, Pradipta R, Ge SS (2011) Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions. J Neuroeng Rehab 8(1):16

    Google Scholar 

  44. 44.

    He H, Ge SS, Zhang Z (2014) A saliency-driven robotic head with bio-inspired saccadic behaviors for social robotics. Autonom Robots 36(3):225–240

    Google Scholar 

  45. 45.

    Goodrich MA, Schultz AC (2008) Human–robot interaction: a survey. Found Trends Human-Computer Inter 1(3):203–275

    MATH  Google Scholar 

  46. 46.

    Broadbent E (2017) Interactions with robots: the truths we reveal about ourselves. Annu Rev Psychol 68:627–652

    Google Scholar 

  47. 47.

    Broekens J, Heerink M, Rosendal H (2009) Assistive social robots in elderly care: a review. Gerontechnology 8(2):94–103

    Google Scholar 

  48. 48.

    Li M, Ge SS, Lee TH (2016) Content-driven associative memories for color image patterns. IEEE Trans Cybernetics 48(1):139–150

    Google Scholar 

  49. 49.

    He H, Ge SS, Zhang Z (2011) Visual attention prediction using saliency determination of scene understanding for social robots. Int J Social Robot 3(4):457–468

    Google Scholar 

  50. 50.

    Ge SS, He H, Zhang Z (2013) Bottom-up saliency detection for attention determination. Mach Vis Appl 24(1):103–116

    Google Scholar 

  51. 51.

    He H, Zhang Z, Ge SS (2010) Attention determination for social robots using salient region detection. Int Conference Social Robot. Springer International Publishing, Cham

  52. 52.

    Zhang Z, Ge SS, He H (2012) Mutual-reinforcement document summarization using embedded graph based sentence clustering for storytelling. Inf Process Manage 48(4):767–778

    Google Scholar 

  53. 53.

    Ge SS, Zeng FY, Liu XR (2020) Social Robotics-Design and Research, (in print). China Machine Press, Beijing

    Google Scholar 

  54. 54.

    Russell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Pearson Education Limited, Harlow

    Google Scholar 

  55. 55.

    Nifong LW, Chitwood WR, Pappas PS, Smith CR, Argenziano M, Starnes VA, Shah PM (2005) Group, Robotic mitral valve surgery: a United States multicenter trial. J Thoracic Cardiovascular Surg 129(6):1395–1404

    Google Scholar 

  56. 56.

    Shull PB, Damian DD (2015) Haptic wearables as sensory replacement, sensory augmentation and trainer–a review. J Neuroeng Rehab 12(1):59

    Google Scholar 

  57. 57.

    Fukushima S, Sekiguchi H, Saito Y, Iida W, Nozaki T, Ohnishi K (2018) Artificial replacement of human sensation using haptic transplant technology. IEEE Trans Industrial Electron 65(5):3985–3994

    Google Scholar 

  58. 58.

    Sinha U, Kanthi M (216) Mind controlled wheelchair. Int J Control Theory Appl 9(39): 19–28

  59. 59.

    Mirza IA, Tripathy A, Chopra S, D'Sa M, Rajagopalan K, D'Souza A, Sharma N (2015) Mind-controlled wheelchair using an EEG headset and arduino microcontroller. in 2015 International Conference on Technologies for Sustainable Development (ICTSD), IEEE, Mumbai

  60. 60.

    Greenfield PM (2014) Mind and media: The effects of television, video games, and computers. Psychology Press, Hove

    Google Scholar 

  61. 61.

    Zhao S, Li Z, Cui R, Kang Y, Sun F, Song R (2017) Brain–machine interfacing-based teleoperation of multiple coordinated mobile robots. IEEE Trans Industrial Electron 64(6):5161–5170

    Google Scholar 

  62. 62.

    He Y, Eguren D, Azorín JM, Grossman RG, Luu TP, Contreras-Vidal JL (2018) Brain–machine interfaces for controlling lower-limb powered robotic systems. J Neural Eng 15(2):021004

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuzhi Sam Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, S.S., Zhao, D., Li, D. et al. Historical and futuristic perspectives of robotics. Artif Life Robotics (2020). https://doi.org/10.1007/s10015-020-00613-7

Download citation

Keywords

  • Robotics
  • Social robots
  • Artificial intelligence
  • Brain-machine interface
  • Industrial robots
  • Mobile robots