Skip to main content

Advertisement

Log in

Clinicopathological evaluation of PD-L1 expression and cytotoxic T-lymphocyte infiltrates across intracranial molecular subgroups of ependymomas: are these tumors potential candidates for immune check-point blockade?

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Immune check-point blockade (ICB) targeting programmed cell death ligand-1 (PD-L1)/programmed death-1 (PD-1) axis has created paradigm shift in cancer treatment. ‘ST-RELA’ and ‘PF-A’ molecular subgroups of ependymomas (EPN) show poor outcomes. We aimed to understand the potential candidature of EPNs for ICB. Supratentorial (ST) Grade II/III EPNs were classified into ST-RELA, ST-YAP, and ST-not otherwise specified (NOS), based on RELA/YAP1 fusion transcripts and/or L1CAM and p65 protein expression. Posterior fossa (PF) EPNs were classified into PF-A and PF-B based on H3K27me3 expression. Immunohistochemistry for PD-L1 and CD8 was performed. RelA protein enrichment at PDL1 promoter site was analysed by chromatin immunoprecipitation-qPCR (ChIP-qPCR). Eighty-three intracranial EPNs were studied. Median tumor infiltrating CD8 + cytotoxic T-lymphocyte (CTL) density was 6/mm2, and was higher in ST-EPNs (median 10/mm2) as compared to PF-EPNs (median 3/mm2). PD-L1 expression was noted in 17/83 (20%) EPNs, including 12/31 ST-RELA and rare ST-NOS (2/12), PF-A (2/25) and PF-B (1/13) EPNs. Twelve EPNs (14%) showed high CTL density and concurrent PD-L1 positivity, of which majority (10/12) were ST-RELA EPNs. Enrichment of RelA protein was seen at PDL1 promoter. Increased CTL densities and upregulation of PD-L1 in ST-RELA ependymomas suggests potential candidature for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellison DW, McLendon R, Wiestler OD et al (2016) Ependymoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system, 4th edn. IARC, Lyon, pp 106–112

    Google Scholar 

  2. Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, Smith A et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133:5–12

    Article  CAS  Google Scholar 

  3. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  Google Scholar 

  4. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y et al (2014) C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455

    Article  CAS  Google Scholar 

  5. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stütz AM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450

    Article  CAS  Google Scholar 

  6. Malgulwar PB, Nambirajan A, Pathak P, Faruq M, Rajeshwari M, Singh M et al (2018) C11orf95-RELA fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin. J Neurooncol 138:29–39

    Article  CAS  Google Scholar 

  7. Gessi M, Giagnacovo M, Modena P, Elefante G, Gianno F, Buttarelli FR et al (2019) Role of immunohistochemistry in the identification of supratentorial C11ORF95-RELA fused ependymoma in routine neuropathology. Am J Surg Pathol 43:56–63

    Article  Google Scholar 

  8. Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C et al (2017) Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol 134:705–714

    Article  CAS  Google Scholar 

  9. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  Google Scholar 

  10. Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 11:504–514

    Article  CAS  Google Scholar 

  11. Kong LY, Wei J, Haider AS, Liebelt BD, Ling X, Conrad CA et al (2014) Therapeutic targets in subependymoma. J Neuroimmunol 277:168–175

    Article  CAS  Google Scholar 

  12. Dumont B, Forest F, Dal Col P, Karpathiou G, Stephan JL, Vassal F et al (2017) PD1 and PD-L1 in ependymoma might not be therapeutic targets. Clin Neuropathol 36:90–92

    Article  Google Scholar 

  13. Garber ST, Hashimoto Y, Weathers SP, Xiu J, Gatalica Z, Verhaak RG et al (2016) Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro Oncol 18:1357–1366

    Article  CAS  Google Scholar 

  14. Witt DA, Donson AM, Amani V, Moreira DC, Sanford B, Hoffman LM et al (2018) Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: implications for PD-1-targeted therapy. Pediatr Blood Cancer 65:e26960

    Article  Google Scholar 

  15. Hwang K, Koh EJ, Choi EJ, Kang TH, Han JH, Choe G et al (2018) PD-1/PD-L1 and immune-related gene expression pattern in pediatric malignant brain tumors: clinical correlation with survival data in Korean population. J Neurooncol 139:281–291

    Article  CAS  Google Scholar 

  16. Nam SJ, Kim YH, Park JE, Ra YS, Khang SK, Cho YH et al (2019) Tumor-infiltrating immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with clinicopathological and prognostic parameters in ependymoma. Cancer Immunol Immunother 68:305–318

    Article  Google Scholar 

  17. Büttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ et al (2017) Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J Clin Oncol 35:3867–3876

    Article  Google Scholar 

  18. Cui S, Dong L, Qian J, Ye L, Jiang L (2018) Classifying non-small cell lung cancer by status of programmed cell death ligand 1 and tumor-infiltrating lymphocytes on tumor cells. J Cancer 9:129–134

    Article  Google Scholar 

  19. Gandini S, Massi D, Mandalà M (2016) PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol Hematol 100:88–98

    Article  Google Scholar 

  20. Groot JFD, Penas-Prado M, Mandel JJ, O’Brien BJ, Weathers SPS, Zhou S et al (2018) Window of opportunity clinical trial of a PD-1 inhibitor in patients with recurrent glioblastoma. J Clin Oncol 36:2008. https://doi.org/10.1200/JCO.2018.36.15_suppl.2008

    Article  Google Scholar 

  21. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT et al (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116

    Article  Google Scholar 

  22. Campesato LF, Barroso-Sousa R, Jimenez L, Correa BR, Sabbaga J, Hoff PM et al (2015) Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. Oncotarget 6:34221–34227

    Article  Google Scholar 

  23. Carbone M, Yang H, Gaudino G (2019) Does chromothripsis make mesothelioma an immunogenic cancer? J Thorac Oncol 14:157–159

    Article  Google Scholar 

  24. Koirala P, Roth ME, Gill J, Piperdi S, Chinai JM, Geller DS et al (2016) Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep 6:30093

    Article  CAS  Google Scholar 

  25. Gorsi HS, Malicki DM, Barsan V, Tumblin M, Yeh-Nayre L, Milburn M et al (2019) Nivolumab in the treatment of recurrent or refractory pediatric brain tumors: a single institutional experience. J Pediatr Hematol Oncol 41:e235–e241

    Article  CAS  Google Scholar 

  26. Mansfield AS, Peikert T, Smadbeck JB, Udell JBM, Garcia-Rivera E, Elsbernd L et al (2019) Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J Thorac Oncol 14:276–287

    Article  Google Scholar 

  27. Gowrishankar K, Gunatilake D, Gallagher SJ, Tiffen J, Rizos H, Hersey P (2015) Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-κB. PLoS One 10:e0123410

    Article  Google Scholar 

  28. Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T et al (2014) EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget 5:12189–12202

    PubMed  PubMed Central  Google Scholar 

  29. Asgarova A, Asgarov K, Godet Y, Peixoto P, Nadaradjane A, Boyer-Guittaut M et al (2018) PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma. Oncoimmunology 7:e1423170

    Article  CAS  Google Scholar 

  30. Malgulwar PB, Nambirajan A, Pathak P, Rajeshwari M, Suri V, Sarkar C et al (2018) Epithelial-to-mesenchymal transition–related transcription factors are up-regulated in ependymomas and correlate with a poor prognosis. Hum Pathol 82:149–157

    Article  CAS  Google Scholar 

  31. Donson AM, Birks DK, Barton VN, Wei Q, Kleinschmidt-Demasters BK, Handler MH et al (2009) Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol 183:7428–7440

    Article  CAS  Google Scholar 

  32. Hoffman LM, Donson AM, Nakachi I, Griesinger AM, Birks DK, Amani V et al (2014) Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127:731–745

    Article  CAS  Google Scholar 

  33. Griesinger AM, Josephson RJ, Donson AM, Mulcahy Levy JM, Amani V, Birks DK et al (2015) Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in Group A ependymoma. Cancer Immunol Res 3:1165–1174

    Article  CAS  Google Scholar 

  34. Griesinger AM, Birks DK, Donson AM, Amani V, Hoffman LM, Waziri A et al (2013) Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol 191:4880–4888

    Article  CAS  Google Scholar 

  35. Xue S, Song G, Yu J (2017) The prognostic significance of PD-L1 expression in patients with glioma: a meta-analysis. Sci Rep 7:4231

    Article  Google Scholar 

  36. Wang Y, Zhu C, Song W, Li J, Zhao G, Cao H (2018) PD-L1 expression and CD8(+) T cell infiltration predict a favorable prognosis in advanced gastric cancer. J Immunol Res 2018:4180517

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Science and Engineering Research Board (SERB) (EMR/2016/003365), New Delhi, India; Central Institute of Industrial research (CSIR), New Delhi, India (Pool No 8948A/17); and Neurosciences centre, AIIMS, New Delhi (intramural grants).

Author information

Authors and Affiliations

Authors

Contributions

NA: conceptualization, methodology, formal analysis, data curation, writing—original draft, and writing—review and editing; MPB: methodology, data curation, formal analysis, writing—review and editing; SA: data curation, writing—review and editing; BM: data curation, writing—review and editing; SM: data curation, writing—review and editing; SV: data curation, writing—review and editing; SC: data curation, writing—review and editing; SMC: conceptualization, methodology, funding acquisition, project administration, formal analysis, data curation, writing—original draft, and writing—review and editing

Corresponding author

Correspondence to Mehar Chand Sharma.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

The research has been ethically approved by the institute ethics committee (Ref. No. IEC-602/03.11.2017)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nambirajan, A., Malgulwar, P.B., Sharma, A. et al. Clinicopathological evaluation of PD-L1 expression and cytotoxic T-lymphocyte infiltrates across intracranial molecular subgroups of ependymomas: are these tumors potential candidates for immune check-point blockade?. Brain Tumor Pathol 36, 152–161 (2019). https://doi.org/10.1007/s10014-019-00350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-019-00350-1

Keywords

Navigation