Skip to main content

Advertisement

Log in

Clinical, histopathological, and molecular analyses of IDH-wild-type WHO grade II–III gliomas to establish genetic predictors of poor prognosis

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The genetic features of isocitrate dehydrogenase-wild-type (IDH-wt) lower-grade gliomas (LGGs; World Health Organization grades II and III) are not well defined. This study analyzed the genetic and other features of IDH-wt LGGs to develop a subclassification that can be used to predict their prognosis. Clinical, histopathological, and genetic features of 35 cases of diffuse IDH-wt astrocytoma and IDH-wt anaplastic astrocytoma were analyzed. The following genetic factors were examined: mutations of B-rapidly accelerated fibrosarcoma, telomerase reverse transcriptase promoter (TERTp), histone 3 family 3A, and alpha-thalassemia/mental retardation syndrome, X-linked; and copy number aberrations. In the univariate analysis, the following factors were associated with poor overall survival (OS): the histopathological diagnosis, TERTp mutation, the gain of chromosome 7 (+ 7), and the loss of chromosome 10q (− 10q). In the multivariate analysis, + 7, − 10q, and TERTp mutation were independent prognostic factors associated with poor OS. The median OS was significantly worse for patients who harbored at least one of these factors than for those without any of them (18.5 vs. 54.5 months, P = 0.002). The subclassification of IDH-wt LGGs according to the genetic factors + 7, − 10q, and TERTp mutation is potentially useful for predicting the prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2016) WHO classification of tumours of the central nervous system, 4th edn. IARC, Lyon

    Google Scholar 

  2. Wijnenga MMJ, Dubbink HJ, French PJ et al (2017) Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol 134:957–959

    Article  CAS  Google Scholar 

  3. Aibaidula A, Chan AKY, Shi Z et al (2017) Adult IDH wild-type lower grade gliomas should be further stratified. Neuro Oncol 19(10):1327–1337

    Article  CAS  Google Scholar 

  4. Weller M, Weber RG, Willscher E et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129:679–693

    Article  CAS  Google Scholar 

  5. Stichel D, Ebrahimi A, Reuss D et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136(5):793–803

    Article  Google Scholar 

  6. Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136(5):805–810

    Article  CAS  Google Scholar 

  7. Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade glioma. Neuro Oncol 20(1):66–77

    Article  CAS  Google Scholar 

  8. van den Bent MJ, Weller M, Wen PY et al (2017) A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics. Neuro Oncol 19(5):614–624

    Article  Google Scholar 

  9. Hirose Y, Sasaki H, Miwa T et al (2011) Whole genome analysis from microdissected tissue revealed adult supratentorial grade II–III gliomas are divided into clinically relevant subgroups by genetic plofiles. Neurosurgery 69(2):376–390

    Article  Google Scholar 

  10. Hattori N, Hirose Y, Sasaki H et al (2016) World Health Organization grade II–III astrocytomas consist of genetically distinct tumor lineages. Cancer Sci 107(8):1159–1164

    Article  CAS  Google Scholar 

  11. Arslantas A, Artan S, Oner U et al (2007) Genomic alterations in low-grade, anaplastic astrocytomas and glioblastomas. Pathol Oncol Res 13(1):39–46

    Article  CAS  Google Scholar 

  12. Koelsche C, Sahm F, Capper D et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126(6):907–915

    Article  CAS  Google Scholar 

  13. Liu XY, Gerges N, Korshunov A et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124(5):615–625

    Article  CAS  Google Scholar 

  14. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  Google Scholar 

  15. Dahiya S, Emnett RJ, Haydon DH et al (2014) BRAF-V600E mutation in pediatric and adult glioblastoma. Neuro Oncol 16(2):318–319

    Article  Google Scholar 

  16. Pekmezci M, Rice T, Molinaro AM et al (2017) Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol 133(6):1001–1016

    Article  CAS  Google Scholar 

  17. Bloch O, Han SJ, Cha S et al (2012) Impact of extent of resection for recurrent glioblastoma on overall survival. J Neurosurg 117:1032–1038

    Article  Google Scholar 

  18. Wisoff JH, Boyett JM, Berger MS et al (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89(1):52–59

    Article  CAS  Google Scholar 

  19. Almenawer SA, Badhiwala JH, Alhazzani W et al (2015) Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and meta-analysis. Neuro Oncol 17(6):868–881

    Article  Google Scholar 

  20. Nakagawa Y, Sasaki H, Ohara K et al (2017) Clinical and molecular prognostic factors for long-term survival of patients with glioblastomas in single-institutional consecutive cohort. World Neurosurg 106:165–173

    Article  Google Scholar 

  21. Liu X, Bishop J, Shan Y et al (2013) Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20(4):603–610

    Article  Google Scholar 

  22. Huang T, Zhuge J, Zhang W (2013) Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR. Biomark Res 1:3

    Article  Google Scholar 

  23. Zhang R, Shi Z, Chen H et al (2015) Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget 7(4):5030–5041

    PubMed Central  Google Scholar 

  24. Gielen GH, Gessi M, Hammes J et al (2013) H3F3A K27M mutation in pediatric CNS tumors a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 139(3):345–349

    Article  CAS  Google Scholar 

  25. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129(4):585–596

    Article  CAS  Google Scholar 

  26. Hewer E, Vajtai I, Dettmer MS et al (2016) Combined ATRX/IDH immunohistochemistry predicts genotype of oligoastrocytomas. Histopathol 68:272–278

    Article  Google Scholar 

  27. Wiestler B, Capper D, Holland-Letz T et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126:443–451

    Article  CAS  Google Scholar 

  28. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl 48(3):452–458

    Article  CAS  Google Scholar 

  29. Pallud J, Fontaine D, Duffau H et al (2010) Natural history of incidental World Health Organization grade II gliomas. Ann Neurol 68(5):727–733

    Article  Google Scholar 

  30. Reinhardt A, Stichel D, Schrimpf D et al (2018) Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol 136(2):273–291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also thank Mrs. Fujiko Sueishi and Mrs. Tomoko Suzuki for technical support and Mr. Takeo Ezaki for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Ohba.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwahara, K., Ohba, S., Nakae, S. et al. Clinical, histopathological, and molecular analyses of IDH-wild-type WHO grade II–III gliomas to establish genetic predictors of poor prognosis. Brain Tumor Pathol 36, 135–143 (2019). https://doi.org/10.1007/s10014-019-00348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-019-00348-9

Keywords

Navigation