Skip to main content

Advertisement

Log in

The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Diffuse gliomas (grades II–IV) are amongst the most frequent and devastating primary brain tumours of adults. Currently, patients are monitored by clinical examination and radiographic imaging, which can be challenging to interpret and insensitive to early signs of treatment failure and tumour relapse. While brain biopsy and histologic analysis can evaluate disease progression, serial biopsies are invasive and impractical given the cumulative surgical risk, and may not capture the complete molecular landscape of an evolving tumour. The availability of a minimally invasive ‘liquid biopsy’ that could assess tumour activity and molecular phenotype in situ has the potential to greatly enhance patient care. Circulating extracellular vesicles (EVs) hold significant promise as robust disease-specific biomarkers accessible in the blood of patients with glioblastoma and other diffuse gliomas. EVs are membrane-bound nanoparticles shed from most if not all cells of the body, and carry DNA, RNA, protein, and lipids that reflect the identity and molecular state of their cell-of-origin. EVs can cross the blood–brain barrier and their release is upregulated in neoplasia. In this review, we describe the current knowledge of EV biology, the role of EVs in glioma biology and the current experience and challenges in profiling glioma-EVs from the circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  2. Delgado-Lopez PD, Corrales-Garcia EM (2016) Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 18(11):1062–1071

    Article  CAS  PubMed  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rivera AL, Pelloski CE, Gilbert MR et al (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12(2):116–121

    Article  CAS  PubMed  Google Scholar 

  6. Dunn J, Baborie A, Alam F et al (2009) Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br J Cancer 101(1):124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holland EC, Multiforme G (2000) The terminator. Proc Natl Acad Sci USA 97(12):6242–6244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  9. Hunter C, Smith R, Cahill DP et al (2006) A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66(8):3987–3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim H, Zheng S, Amini SS et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brommeland T, Rosengren L, Fridlund S et al (2007) Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol Scand 116(6):380–384

    Article  CAS  PubMed  Google Scholar 

  12. Peles E, Lidar Z, Simon AJ et al (2004) Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery 55(3):562–567 (discussion 567–8)

    Article  PubMed  Google Scholar 

  13. Boisselier B, Perez-Larraya JG, Rossetto M et al (2012) Detection of IDH1 mutation in the plasma of patients with glioma. Neurology 79(16):1693–1698

    Article  CAS  PubMed  Google Scholar 

  14. Salkeni MA, Zarzour A, Ansay TY et al (2013) Detection of EGFRvIII mutant DNA in the peripheral blood of brain tumor patients. J Neurooncol 115(1):27–35

    Article  CAS  PubMed  Google Scholar 

  15. Gao F, Cui Y, Jiang H et al (2016) Circulating tumor cell is a common property of brain glioma and promotes the monitoring system. Oncotarget 7(44):71330–71340

    PubMed  PubMed Central  Google Scholar 

  16. Hallal S, Russell BP, Wei H et al (2018) Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A (CCT6A) as a potential glioblastoma biomarker with prognostic significance. Proteomics 19(1–2):e1800157

    Google Scholar 

  17. Ebrahimkhani S, Vafaee F, Hallal S et al (2018) Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morrison GJ, Goldkorn A (2018) Development and application of liquid biopsies in metastatic prostate cancer. Curr Oncol Rep 20(4):35

    Article  PubMed  PubMed Central  Google Scholar 

  19. Best MG, Sol N, Zijl S et al (2015) Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 129(6):849–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giannopoulou L, Kasimir-Bauer S, Lianidou ES (2018) Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA. Clin Chem Lab Med 56(2):186–197

    Article  CAS  PubMed  Google Scholar 

  21. Shao H, Chung J, Lee K et al (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6:6999

    Article  CAS  PubMed  Google Scholar 

  22. Alexander BM, Ba S, Berger MS et al (2018) Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res 24(4):737–743

    Article  PubMed  Google Scholar 

  23. Hamilton JD, Rapp M, Schneiderhan T et al (2014) Glioblastoma multiforme metastasis outside the CNS: three case reports and possible mechanisms of escape. J Clin Oncol 32(22):e80–e84

    Article  PubMed  Google Scholar 

  24. Macarthur KM, Kao GD, Chandrasekaran S, Alonso-Basanta M et al (2014) Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res 74(8):2152–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sullivan JP, Nahed BV, Madden MW et al (2014) Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 4(1):1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Xu H, Huang M et al (2018) Circulating glioma cells exhibit stem cell-like properties. Cancer Res 78(23):6632

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ilhan A, Gartner W, Neziri D, Czech T et al (2009) Angiogenic factors in plasma of brain tumour patients. Anticancer Res 29(2):731–736

    CAS  PubMed  Google Scholar 

  28. Quaranta M, Divella R, Daniele A, Di Tardo S et al (2007) Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas. Tumori J 93(3):275–280

    Article  CAS  Google Scholar 

  29. Balana C, Carrato C, Ramirez JL, Cardona AF et al (2011) Tumour and serum MGMT promoter methylation and protein expression in glioblastoma patients. Clin Transl Oncol 13(9):677–685

    Article  CAS  PubMed  Google Scholar 

  30. Yang C, Wang C, Chen X, Chen S et al (2013) Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer 132(1):116–127

    Article  CAS  PubMed  Google Scholar 

  31. Ma C, Nguyen HPT, Luwor RB et al (2018) A comprehensive meta-analysis of circulation miRNAs in glioma as potential diagnostic biomarker. PLoS One 13(2):e0189452–e0189452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcia-Romero N, Carrion-Navarro J, Esteban-Rubio S et al (2017) DNA sequences within glioma-derived extracellular vesicles can cross the intact blood–brain barrier and be detected in peripheral blood of patients. Oncotarget 8(1):1416–1428

    Article  PubMed  Google Scholar 

  33. Albulescu R, Codrici E, Popescu ID, Mihai S et al (2013) Cytokine patterns in brain tumour progression. Mediat Inflamm 2013:979748. https://doi.org/10.1155/2013/979748

    Article  CAS  Google Scholar 

  34. Reynes G, Vila V, Martin M, Martin M, Parada A et al (2011) Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J Neurooncol 102(1):35–41

    Article  CAS  PubMed  Google Scholar 

  35. Husain H, Savage W, Grossman SA, Ye X et al (2012) Pre- and post-operative plasma glial fibrillary acidic protein levels in patients with newly diagnosed gliomas. J Neurooncol 109(1):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilhan-Mutlu A, Wagner L, Widhalm G, Wohrer A et al (2013) Exploratory investigation of eight circulating plasma markers in brain tumor patients. Neurosurg Rev 36(1):45–55

    Article  PubMed  Google Scholar 

  37. Lin Y, Wang JF, Gao G-Z, Gao GF, Zhang G-Z et al (2013) Plasma levels of tissue inhibitor of matrix metalloproteinase-1 correlate with diagnosis and prognosis of glioma patients. Chin Med J 126(22):4295–4300

    CAS  PubMed  Google Scholar 

  38. Crocker M, Ashley S, Giddings I, Petrik V et al (2011) Serum angiogenic profile of patients with glioblastoma identifies distinct tumor subtypes and shows that TIMP-1 is a prognostic factor. Neuro Oncol 13(1):99–108

    Article  CAS  PubMed  Google Scholar 

  39. Eoli M, Di Stefano AL, Aquino D et al (2013) Tumor perfusion during bevacizumab and irinotecan in recurrent glioblastoma: a multimodal approach. J Clin Oncol 31(15_suppl):2074–2074

    Google Scholar 

  40. Tabouret E, Boudouresque F, Barrie M, Matta M et al (2014) Association of matrix metalloproteinase 2 plasma level with response and survival in patients treated with bevacizumab for recurrent high-grade glioma. Neuro Oncol 16(3):392–399

    Article  CAS  PubMed  Google Scholar 

  41. Lombardi G, Corona G, Bellu L et al (2015) Diagnostic value of plasma and urinary 2-hydroxyglutarate to identify patients with isocitrate dehydrogenase-mutated glioma. Oncologist 20(5):562–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Capper D, Simon M, Langhans C-D, Okun JG et al (2012) 2-Hydroxyglutarate concentration in serum from patients with gliomas does not correlate with IDH1/2 mutation status or tumor size. Int J Cancer 131(3):766–768

    Article  CAS  PubMed  Google Scholar 

  43. Wakabayashi T, Natsume A, Hatano H, Fujii M et al (2009) p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery 64(3):455–461

    Article  PubMed  Google Scholar 

  44. Majchrzak-Celinska A, Paluszczak J, Kleszcz R, Magiera M et al (2013) Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet 54(3):335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lavon I, Refael M, Zelikovitch B, Shalom E et al (2010) Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol 12(2):173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moller HG, Rasmussen AP, Andersen HH, Johnsen KB et al (2013) A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 47(1):131–144

    Article  CAS  PubMed  Google Scholar 

  47. Bettegowda C, Sausen M, Leary RJ, Kinde I et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 9(224):224ra24

    Article  CAS  Google Scholar 

  48. Yanez-Mo M, Siljander PR, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  49. Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pavlyukov MS, Yu H, Bastola S et al (2018) Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell 34(1):119–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bebelman MP, Smit MJ, Pegtel DM et al (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11

    Article  CAS  PubMed  Google Scholar 

  52. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91

    Article  CAS  PubMed  Google Scholar 

  53. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106(2):145–155

    Article  CAS  PubMed  Google Scholar 

  54. Babst M, Katzmann DJ, Snyder WB et al (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3(2):283–289

    Article  CAS  PubMed  Google Scholar 

  55. Babst M, Katzmann DJ, Estepa-Sabal EJ et al (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3(2):271–282

    Article  CAS  PubMed  Google Scholar 

  56. Christ L, Raiborg C, Wenzel EM et al (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42(1):42–56

    Article  CAS  PubMed  Google Scholar 

  57. Baietti MF, Zhang Z, Mortier E et al (2012) Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685

    Article  CAS  PubMed  Google Scholar 

  58. Stuffers S, Sem Wegner C, Stenmark H et al (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937

    Article  CAS  PubMed  Google Scholar 

  59. Nabhan JF, Hu R, Oh RS et al (2012) Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA 109(11):4146–4151

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sebbagh M, Renvoize C, Hamelin J et al (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3(4):346–352

    Article  CAS  PubMed  Google Scholar 

  62. Coleman ML, Sahai EA, Yeo M et al (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3(4):339–345

    Article  CAS  PubMed  Google Scholar 

  63. Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harding C, Stahl P (1983) Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem Biophys Res Commun 113(2):650–658

    Article  CAS  PubMed  Google Scholar 

  65. Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851

    CAS  PubMed  Google Scholar 

  66. Nakano I, Garnier D, Minata M et al (2015) Extracellular vesicles in the biology of brain tumour stem cells–Implications for inter-cellular communication, therapy and biomarker development. Semin Cell Dev Biol 40:17–26

    Article  CAS  PubMed  Google Scholar 

  67. Chistiakov DA, Chekhonin VP (2014) Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol 35(9):8425–8438

    Article  CAS  PubMed  Google Scholar 

  68. Hoshino A, Costa-Silva B, Shen T-L et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kucharzewska P, Christianson HC, Welch JE et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA 110(18):7312–7317

    Article  PubMed  PubMed Central  Google Scholar 

  72. Trams EG, Lauter CJ, Norman S Jr et al (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. BBA Biomembr 645(1):63–70

    Article  CAS  Google Scholar 

  73. Broekman ML, Maas SLN, Abels ER et al (2018) Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 14(8):482–495

    Article  PubMed  PubMed Central  Google Scholar 

  74. Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624

    Article  CAS  PubMed  Google Scholar 

  75. Li CC, Eaton SA, Young PE et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10(8):1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Svensson KJ, Kucharzewska P, Christianson HC et al (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci USA 108(32):13147–13152

    Article  PubMed  PubMed Central  Google Scholar 

  77. Platet N, Liu SY, Atifi ME et al (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258(2):286–290

    Article  CAS  PubMed  Google Scholar 

  78. Li Z, Bao S, Wu Q et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kolenda J, Jensen SS, Aaberg-Jessen C et al (2011) Effects of hypoxia on expression of a panel of stem cell and chemoresistance markers in glioblastoma-derived spheroids. J Neurooncol 103(1):43–58

    Article  CAS  PubMed  Google Scholar 

  80. Joseph JV, Conroy S, Pavlov K et al (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α–ZEB1 axis. Cancer Lett 359(1):107–116

    Article  CAS  PubMed  Google Scholar 

  81. Hallal S, Mallawaaratchy DM, Wei H et al (2018) Extracellular vesicles released by glioblastoma cells stimulate normal astrocytes to acquire a tumor-supportive phenotype via p53 and MYC signaling pathways. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1385-1

    Article  PubMed  PubMed Central  Google Scholar 

  82. van der Vos KE, Abels ER, Zhang X et al (2015) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol 18(1):58–69

    PubMed  PubMed Central  Google Scholar 

  83. Systemic T (2017) Cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS One 12(1):e0169932

    Article  CAS  Google Scholar 

  84. de Vrij J, Maas SLN, Kwappenberg KMC et al (2015) Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. Int J Cancer 137(7):1630–1642

    Article  CAS  PubMed  Google Scholar 

  85. Hsieh CH, Tai SK, Yang MH (2018) Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering MiR-21-abundant exosomes. Neoplasia 20(8):775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu W, Chan CS, Wu R et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rand D, Cazacu S, Hong X et al (2018) Overexpression of miR-504 in glioma stem cells inhibits the oncogenic potential and the crosstalk of these cells with microglia via exosomal delivery. J Extracell Vesicles 7(sup1):1461450

    Article  Google Scholar 

  88. Matias D, Balca-Silva J, da Graca GC et al (2018) Microglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci 12:235

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gabrusiewicz K, Li X, Wei J et al (2018) Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7(4):e1412909

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thakur BK, Zhang H, Becker A et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eldh M, Olofsson Bagge R, Lasser C et al (2014) MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer 14:962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang T, Martin P, Fogarty B et al (2015) Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wood MJ, O’Loughlin AJ, Samira L (2011) Exosomes and the blood–brain barrier: implications for neurological diseases. Ther Deliv 2(9):1095–1099

    Article  CAS  PubMed  Google Scholar 

  94. Osti D, Del Bene M, Rappa G et al (2019) Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin Cancer Res 25(1):266–276

    Article  PubMed  Google Scholar 

  95. Lai CP, Mardini O, Ericsson M et al (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8(1):483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rank A, Nieuwland R, Crispin A, Grutzner S et al (2011) Clearance of platelet microparticles in vivo. Platelets 22(2):111–116

    Article  CAS  PubMed  Google Scholar 

  97. Mallawaaratchy DM, Hallal S, Russell B et al (2016) Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. J Neuro Oncol 131(2):233–244

    Article  CAS  Google Scholar 

  98. Ricklefs F, Mineo M, Rooj AK et al (2016) Extracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain intratumoral heterogeneity. Cancer Res 76(10):2876–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Akers JC, Ramakrishnan V, Kim R, Skog J et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8(10):e78115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452

    Article  CAS  PubMed  Google Scholar 

  101. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8(6):1649–1658

    Article  CAS  PubMed  Google Scholar 

  102. Kosaka N, Iguchi H, Hagiwara K et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288(15):10849–10859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980

    Article  CAS  PubMed  Google Scholar 

  104. Janas T, Janas T (2011) The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett 16(1):25–39

    Article  CAS  PubMed  Google Scholar 

  105. Balaj L, Lessard R, Dai L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  CAS  PubMed  Google Scholar 

  106. Manterola L, Guruceaga E, Perez-Larraya J, Gonzalez-Huarriz M et al (2014) A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol 16(4):520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kalra H, Simpson RJ, Ji H et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Al-Nedawi K, Meehan B, Kerbel RS et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106(10):3794–3799

    Article  PubMed  PubMed Central  Google Scholar 

  109. Graner MW, Alzate O, Dechkovskaia AM et al (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J Off Publ Feder Am Soc Exp Biol 23(5):1541–1557

    CAS  Google Scholar 

  110. Noerholm M, Balaj L, Limperg T et al (2012) RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen WW, Balaj L, Liau LM et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Akers JC, Ramakrishnan V, Kim R et al (2015) miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J Neuro Oncol 123(2):205–216

    Article  CAS  Google Scholar 

  113. Shi R, Wang PY, Li XY et al (2015) Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6(29):26971–26981

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pinet S, Bessette B, Vedrenne N et al (2016) TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 7(31):50349–50364

    Article  PubMed  PubMed Central  Google Scholar 

  115. Luhtala N, Aslanian A, Yates JR 3rd et al (2017) Secreted glioblastoma nanovesicles contain intracellular signaling proteins and active ras incorporated in a farnesylation-dependent manner. J Biol Chem 292(2):611–628

    Article  CAS  PubMed  Google Scholar 

  116. Yang JK, Yang JP, Tong J et al (2017) Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J Neurooncol 131(2):255–265

    Article  CAS  PubMed  Google Scholar 

  117. Akers JC, Hua W, Li H et al (2017) A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget 8(40):68769–68779

    Article  PubMed  PubMed Central  Google Scholar 

  118. Figueroa JM, Skog J, Akers J et al (2017) Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro Oncol 19(11):1494–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Figueroa J, Phillips LM, Shahar T et al (2017) Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res 77(21):5808–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lan F, Qing Q, Pan Q et al (2018) Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol (Dordr) 41(1):25–33

    Article  CAS  Google Scholar 

  121. Ricklefs FL, Alayo Q, Krenzlin H et al (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4(3):eaar2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tan SK, Pastori C, Penas C et al (2018) Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer 17(1):74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang K, Fang C, Yi K et al (2018) The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 8(6):1540–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Manda SV, Kataria Y, Tatireddy BR et al (2018) Exosomes as a biomarker platform for detecting epidermal growth factor receptor-positive high-grade gliomas. J Neurosurg 128(4):1091–1101

    Article  CAS  PubMed  Google Scholar 

  125. Indira Chandran V, Welinder C, Mansson AS et al (2019) Ultrasensitive immunoprofiling of plasma extracellular vesicles identifies syndecan-1 as a potential tool for minimally invasive diagnosis of glioma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-2946

    Article  PubMed  Google Scholar 

  126. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  127. Lan F, Qing Q, Pan Q et al (2018) Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol 41(1):25–33

    Article  CAS  Google Scholar 

  128. Komori T (2017) The 2016 WHO classification of tumours of the central nervous system: the major points of revision. Neurol Med Chir 57(7):301–311

    Article  Google Scholar 

  129. Melki I, Tessandier N, Zufferey A et al (2017) Platelet microvesicles in health and disease. Platelets 28(3):214–221

    Article  CAS  PubMed  Google Scholar 

  130. Fraser K, Jo A, Giedt J et al (2018) Characterization of single microvesicles in plasma from glioblastoma patients. Neuro Oncol. https://doi.org/10.1093/neuonc/noy187

    Article  PubMed Central  Google Scholar 

  131. Roy S, Small J, Lansbury E et al (2018) Plasma-based detection of gliomas. J Extracell Vesicles 7:175–175

    Article  Google Scholar 

  132. Konoshenko MY, Lekchnov EA, Vlassov AV et al (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:8545347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuana Y, Boing AN, Grootemaat AE et al (2015) Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles 4:29260

    Article  CAS  PubMed  Google Scholar 

  134. Srinivasan S, Cheah P, Danielson K et al (2018) Systematic study of exRNA isolation reveals presence of distinct exRNA carriers. J Extracell Vesicles 7:122–123

    Google Scholar 

  135. Ibsen SD, Wright J, Lewis JM et al (2017) Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 11(7):6641–6651

    Article  CAS  PubMed  Google Scholar 

  136. Liang LG, Sheng YF, Zhou S et al (2017) An integrated double-filtration microfluidic device for detection of extracellular vesicles from urine for bladder cancer diagnosis. Methods Mol Biol 1660:355–364

    Article  CAS  PubMed  Google Scholar 

  137. Reategui E, van der Vos KE, Lai CP et al (2018) Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun 9(1):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors contributed to the manuscript preparation and approved the submission of the work presented here. We thank Brainstorm, a brain cancer research charity of RPA Hospital. S. Hallal is a recipient of an Australian Postgraduate Award and Australian Rotary Health postgraduate support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Buckland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallal, S., Ebrahimkhani, S., Shivalingam, B. et al. The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring. Brain Tumor Pathol 36, 29–39 (2019). https://doi.org/10.1007/s10014-019-00335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-019-00335-0

Keywords

Navigation