On the Existence of Solutions and Tikhonov Regularization of Hemivariational Inequality Problems


This paper is devoted to the existence of solution and Tikhonov regularization theory for a class of hemivariational inequalities. We give the existence of solutions for the class of hemivariational inequalities when the mappings satisfy the so-called hemivariational inequality property and a rather weak coercivity condition. The existence result allows us to deduce the Tikhonov regularization result. Our results generalize some results by He (Abstr. Appl. Anal. 2012, 172061, 2012) and others.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alleche, B., Rădulescu, V.D., Sebaoui, M.: The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities. Optim. Lett. 9, 483–503 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (2009)

    Google Scholar 

  3. 3.

    Bianchi, M., Hadjisavvas, N., Schaible, S.: Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities. J. Optim. Theory Appl. 122, 1–17 (2004)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications. Springer, US (2007)

  5. 5.

    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    Google Scholar 

  6. 6.

    Costea, N., Rădulescu, V.: Hartman–stampacchia results for stably pseudomonotone operators and non-linear hemevariational inequalities. Appl. Anal. 89, 175–188 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  8. 8.

    Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. USA 39, 42–47 (1953)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Haslinger, J., Panagiotopoulos, P.D.: Optimal control of systems governed by hemivariational inequalities. Existence and approximation results. Nonlinear Anal. TMA 24, 105–119 (1995)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Han, J., Huang, Z.H., Fang, S.C.: Solvability of variational inequality problems. J. Optim. Theory Appl. 122, 501–520 (2004)

    MathSciNet  Article  Google Scholar 

  12. 12.

    He, Y.R.: Stable pseudomonotone variational inequality in reflexive Banach spaces. J. Math. Anal. Appl. 330, 352–363 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    He, Y.R.: The Tikhonov regularization method for set-valued variational inequalities. Abstr. Appl. Anal. 2012, 172061 (2012)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Kassay, G., Rădulescu, V.D.: Equilibrium Problems and Applications. Academic Press, Elsevier (2018)

    Google Scholar 

  15. 15.

    Konnov, I.V.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 99, 165–181 (1998)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Konnov, I.V.: On the convergence of a regularization method for variational inequalities. Comput. Math. Math. Phys. 46, 541–547 (2006)

    MathSciNet  Article  Google Scholar 

  17. 17.

    László, S.: Multivalued variational inequalities and coincidence point results. J. Math. Anal. Appl. 404, 105–114 (2013)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu, Z.H., Zeng, S.D., Motreanu, D.: Partial differential hemivariational inequalities. Adv. Nonlinear Anal. 7, 571–586 (2018)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liu, Z.H., Li, X.W., Motreanu, D.: Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces. SIAM J. Control Optim. 53, 3228–3244 (2015)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Liu, Z.H., Li, X.W.: Approximate controllability for a class of hemivariational inequalities. Nonlinear Anal. RWA. 22, 581–591 (2015)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Luo, X.P.: Tikhonov regularization methods for inverse variational inequalities. Optim. Lett. 8, 877–887 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Migórski, S., Ochal, A.: Optimal control of parabolic hemivariational inequalities. J. Glob. Optim. 17, 285–300 (2000)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Motreanu, D., Rădulescu, V.: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems. Kluwer Academic Publishers, The Netherlands (2003)

    Google Scholar 

  24. 24.

    Nieuwenhuis, J.W.: Some minimax theorems in vector-valued functions. J. Optim. Theory Appl. 40, 463–475 (1983)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Panagiotopoulos, P.D.: Nonconvex energy functions, hemivariational inequalities and substationarity principles. Acta Mech. 48, 111–130 (1983)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Qi, H.D.: Tikhonov regularization methods for variational inequality problems. J. Optim. Theory Appl. 102, 193–201 (1999)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ravindran, G., Gowda, M.S.: Regularization of p0-functions in box variational inequality problems. SIAM J. Optim. 11, 748–760 (2000)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Tang, G.J., Huang, N.J.: Existence theorems of the variational-hemivariational inequalities. J. Glob. Optim. 56, 605–622 (2013)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Tang, G.J., Wang, X., Wang, Z.B.: Existence of variational quasi-hemivariational inequalities involving a set-valued operator and a nonlinear term. Optim. Lett. 9, 75–90 (2015)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Tang, G.J., Zhou, L.W., Huang, N.J.: Existence results for a class of hemivariational inequality problems on Hadamard manifolds. Optimization 65, 1451–1461 (2016)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Virmani, G., Srivastava, M.: On Levitin–Polyak α-well-posedness of perturbed variational-hemivariational inequality. Optimization 64, 1153–1172 (2015)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Wang, M.: The existence results and Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. Anal. Math. Phys. 7, 151–163 (2017)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Xiao, Y.B., Yang, X.M., Huang, N.J.: Some equivalence results for well-posedness of hemivariational inequalities. J. Glob. Optim. 61, 789–802 (2015)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Xiao, Y.B., Huang, N.J., Wong, M.M.: Well-posedness of hemivariational inequalities and inclusion problems. Taiwan. J. Math. 15, 1261–1276 (2011)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Zhang, Y.L., He, Y.R.: On stably quasimonotone hemeivariational inequalities. Nonlinear Anal. TMA. 74, 3324–3332 (2011)

    Article  Google Scholar 

Download references


The first author was partially supported by National Natural Science Foundations of China (11561008), Guangxi Natural Science Foundation (2014GXNSFAA118006), and Special Fund for Guangxi Bagui Scholars (WBS 2014-04). The second author was partially supported by National Natural Science Foundations of China (71471140). The third author was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information



Corresponding author

Correspondence to Xianfu Wang.

Additional information

Dedicated to Marco A. Lopez on the occasion of his 70th birthday.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Wan, Z. & Wang, X. On the Existence of Solutions and Tikhonov Regularization of Hemivariational Inequality Problems. Vietnam J. Math. 48, 221–236 (2020). https://doi.org/10.1007/s10013-019-00362-6

Download citation


  • Hemivariational inequality
  • KKM mapping
  • Tikhonov regularization
  • Existence
  • Coercivity condition

Mathematics Subject Classification (2010)

  • 90C33
  • 47J20
  • 49J40