Advertisement

Pinching Problems of Minimal Submanifolds in a Product Space

  • Zhong Hua Hou
  • Xin Zhan
  • Wang-hua Qiu
Article
  • 26 Downloads

Abstract

Let \(\mathbb {M}^{m_{1}}(c)\times \mathbb {R}^{m_{2}}\) be a Riemannian product of a space form \(\mathbb {M}^{m_{1}}(c)\) of constant sectional curvature c and a Euclidean space \(\mathbb {R}^{m_{2}}\). Let M n (n ≥ 2) be an n-dimensional immersed connected submanifold in \(\mathbb {M}^{m_{1}}(c)\times \mathbb {R}^{m_{2}}\). We firstly derive the compatible equations for immersion of M n into \(\mathbb {M}^{m_{1}}(c)\times \mathbb {R}^{m_{2}}\). Then, we derive a Simons’ type equation on the squared length of the second fundamental form of M n . When M n is compact and minimal in \(\mathbb {S}^{m_{1}}(c)\times \mathbb {R}^{m_{2}}\), we prove a series of pinching theorems on the Ricci curvature, the squared length, and the squared maximum norm of the second fundamental form of M n .

Keywords

Pinching problems Submanifolds Simons’ type equation Product space form 

Mathematics Subject Classification (2010)

53C40 53C42 

Notes

Acknowledgements

The authors would like to express their sincere thanks and gratefulness to the referees for their precious help and guidance on the original manuscript. We believe that their comments and suggestions have increased the accuracy and quality of this paper.

References

  1. 1.
    Araújo, K.O., dos Santos, J.P.: On applications of Simons’ type formula and reduction of codimension for complete submanifolds in space forms. São Paulo J. Math. Sci. 8, 95–116 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Berger, M.: Les variétés Riemanniennes (1/4)-pincées. Ann. Scuola Norm. Sup. Pisa (3) 14, 161–170 (1960)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Brendle, S., Schoen, R.: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200, 1–13 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brendle, S., Schoen, R.: Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc. 22, 287–307 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, H., Chen, G.Y., Li, H.Z.: Some pinching theorems for minimal submanifolds in \(\mathbb {S}^{m}(1)\mathbb {R}\). Sci. China Math. 56, 1679–1688 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Q., Cui, Q.: Normal scalar curvature and a pinching theorem in \(\mathbb {S}^{m}\mathbb {R}\) and \(\mathbb {H}^{m}\mathbb {R}\). Sci. China Math. 54, 1977–1984 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143, 289–297 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chern, S.S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Browder, F. (ed.) Functional Analysis and Related Fields, pp 59–75. Springer, Berlin (1970)Google Scholar
  9. 9.
    Ejiri, N.: Compact minimal submanifolds of a sphere with positive Ricci curvature. J. Math. Soc. Jpn. 31, 251–256 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fetcu, D., Rosenberg, H.: On complete submanifolds with parallel mean curvature in product spaces. Rev. Mat. Iberoam. 29, 1283–1306 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gauchman, H.: Minimal submanifolds of a sphere with bounded second fundamental form. Trans. Am. Math. Soc. 298, 779–791 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gauchman, H.: Pinching theorems for totally real minimal submanifolds of C P n(c). Tohoku Math. J. 41, 249–257 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hou, Z.H.: Submanifolds of constant scalar curvature in a hyperbolic space form. Taiwan. J. Math. 3, 53–70 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hou, Z.H.: Submanifolds of constant scalar curvature in a space form. Kyungpook Math. J. 38, 439–458 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Klingenberg, W.: ÜBer Riemannsche Mannigfaltigkeiten mit positiver krümmung. Comment. Math. Helv. 35, 47–54 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, A.-M., Li, J.M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. 58, 582–594 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, H.Z.: Curvature pinching for odd-dimensional minimal submanifolds in a sphere. Publ. Inst. Math. (Beograd) (N.S.) 53(67), 122–132 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lovrić, M.: Curvature pinching based on integral norms of the curvature. Can. J. Math. 45, 599–611 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mendonça, B., Tojeiro, R.: Submanifolds of products of space forms. Indiana Univ. Math. J. 62, 1283–1314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shen, Y.-B.: Curvature pinching for three-dimensional minimal submanifolds in a sphere. Proc. Am. Math. Soc. 115, 791–795 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88, 62–105 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, H.-W., Gu, J.-R.: Geometric, topological and differentiable rigidity of submanifolds in space forms. Geom. Funct. Anal. 23, 1684–1703 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xu, H.W., Leng, Y., Gu, J.R.: Geometric and topological rigidity for compact submanifolds of odd dimension. Sci. China Math. 57, 1525–1538 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xu, H.-W., Tian, L.: A differentiable sphere theorem inspired by rigidity of minimal submanifolds. Pac. J. Math. 254, 499–510 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yau, S.T.: Submanifolds with constant mean curvature I. Am. J. Math. 96, 346–366 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yau, S.T.: Submanifolds with constant mean curvature II. Am. J. Math. 97, 76–100 (1975)CrossRefzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.The Institute of MathematicsDalian University of TechnologyDalianChina
  2. 2.College of SciencesJiujiang UniversityJiujiangChina

Personalised recommendations