Advertisement

Forschung im Ingenieurwesen

, Volume 82, Issue 2, pp 107–118 | Cite as

SimHydraulics approach to water hammer problems with the development of new formulas for static pressure diameter coefficient

  • Benyekhlef Kara
  • Ali Nemdili
Originalarbeiten/Originals

Abstract

Water hammer analysis and prediction is of overriding importance for operation safety of hydraulic systems. Therefore, the verification of computer codes capability to model and simulate water hammer is a very interesting topic for the analysis of different fluid-filled pipeline systems. Until now, transient approach of SimHydraulics is not developed, and the validity of this approach against benchmark examples, has never been investigated in scientific literature. In this paper, a numerical model of a reservoir-pipelines-valve system is created using Matlab SimHydraulics software. The main component of this model is the Segmented Pipeline with wall compliance parameters: the viscoelastic process time constant τ and the static pressure diameter coefficient K P for which new formulas were derived and validated. The numerical model is performed to solve transient flow problems caused by closure of a valve and the obtained results are presented and compared with those using the method of characteristic. Also, the effectiveness of the transient model of SimHydraulics is evaluated by comparing the obtained numerical results with the most pertinent experimental results found in the literature. The proposed transient model was adapted for the investigation of more complex piping systems. The results of this study show the ability of the SimHydraulics model to predict the pressure oscillation behavior accurately in all cases considered. This study provides useful information for future research in pump transient simulation using SimHydraulics.

List of symbols

A

Pipe cross-sectional area [m2]

a

Wave velocity [m/s]

CD

Valve flow discharge coefficient [–]

CP

Specific heat at constant pressure [kJ/kg.°C]

CV

Specific heat at constant volume [kJ/kg.°C]

D

External diameter [m]

d

Internal diameter [m]

E

Young’s modulus [Pa]

f

Friction factor [–]

fl

Friction factor at laminar border [–]

ft

Friction factor at turbulent border [–]

g

Gravitational acceleration [m/s2]

H

Pressure head [m-H2O]

H0

Initial pressure head [m-H2O]

K

Pure liquid bulk modulus [Pa]

Kinst

Instantaneous bulk modulus [Pa]

KP

Static pressure diameter coefficient or Wall expansion coefficient [m/Pa]

k

Roughness [m]

L

Pipe length [m]

Leq

Aggregate equivalent length [m]

N

Number of segments [–]

P

Internal pressure [Pa]

p

Pressure differential across the orifice [Pa]

Pa

Atmospheric pressure [Pa]

Paps

Absolute pressure [Pa]

Pe

External pressure [Pa]

Pfi

Fluid inertia [Pa]

Q

Total variation of volume [m3/s]

Q1

Variation of volume due to fluid compressibility [m3/s]

Q2

Variation of volume due to wall compliancy [m3/s]

q

Flow rate [m3/s]

q0

Initial flow rate [m3/s]

Re

Reynolds number [–]

ReL

Maximum Reynolds number at laminar flow [–]

ReT

Minimum Reynolds number at turbulent flow [–]

r

Pipe radius [m]

S

Valve orifice area [m2]

S(h)

Valve instantaneous orifice passage area [m2]

Sleak

Closed orifice leakage area [m2]

t

Time [s]

tc

Valve closure time [s]

u0

Initial velocity [m/s]

VC

Chamber volume [m3]

Vf

Fluid volume [m3]

Vg

Gas volume [m3]

Vl

Liquid volume [m3]

Greek symbols

α

Relative gas content at atmospheric pressure [–]

ε

Radial displacement [m]

γ

Specific heat ratio [–]

δd

Internal diameter change [m]

ν

Poisson’s ratio [–]

θ

Expansion coefficient [–]

µ

Dynamic viscosity [Pa.s]

ρ

Fluid density [kg/m3]

τ

Viscoelastic process time constant [s]

ψ

Dimensionless parameter [–]

SimHydraulics-Ansatz zur Wasserschlag-Probleme mit der Entwicklung neuer Formeln für den statischen Druck-Durchmesser-Koeffizienten

Zusammenfassung

Die Analyse und die Vorhersage vom Wasserschlag ist von größer Bedeutung für die Betriebssicherheit der Hydrauliksysteme. Daher ist die Überprüfung der Fähigkeit der Software zur Modellierung und Simulation vom Wasserschlag ein sehr interessantes Thema für die Analyse unterschiedlicher flüssigkeitsgefüllten Rohrleitungssystemen. Bis jetzt ist transient SimHydraulics Ansatz nicht voll entwickelt, und die Gültigkeit dieses Ansatzes gegenüber Benchmarking-Beispiele, war noch nie in der wissenschaftlichen Literatur untersucht. In dieser Arbeit wird ein numerisches Modell eines Reservoirs-Pipelines-Ventil-System erstellt mit Matlab SimHydraulics Software. Der Hauptbestandteil dieses Modells ist die segmentierten Pipeline mit Wandparameter der Kompatibilität: das viskoelastische Prozesszeitkonstante τ und der statische Druck Durchmesser Kp, wofür neue Formeln sind entwickelt und validiert. Das numerische Modell ist durchgeführt, um die verursachten instationäre Strömungsprobleme durch Schließen eines Ventils zu lösen, und die gewonnenen Ergebnisse sind mit denen unter Verwendung des Verfahrens der Kennlinie verglichen. Außerdem ist die Wirksamkeit der transienten SimHydraulics Modells untersucht durch Vergleichen der erhaltenen Ergebnisse mit den numerischen relevantesten Versuchsergebnisse der Literatur. Die vorgeschlagene Übergangsmodell wurde zur Untersuchung komplexer Rohrleitungssysteme angepasst.

Die Ergebnisse dieser Studie zeigen, die Fähigkeit des SimHydraulics Modell, um die Druckschwingungsverhalten genau in allen betrachteten Fällen vorherzusagen.

References

  1. 1.
    Adamkowski A, Lewandowski M (2006) Experimental examination of unsteady friction models for transient pipe flow simulation. J Fluids Eng 1351(128).  https://doi.org/10.1115/1.2354521 Google Scholar
  2. 2.
    Afshar MH, Rohani M (2008) Water hammer simulation by implicit method of characteristic. Int J Press Vessel Piping 85:851–859.  https://doi.org/10.1016/j.ijpvp.2008.08.006 CrossRefGoogle Scholar
  3. 3.
    Barna IF, Imre AR, Baranyai G, Ézsöl G (2010) Experimental and theoretical study of steam condensation induced water hammer phenomena. Nucl Eng Des 240:146–150.  https://doi.org/10.1016/j.nucengdes.2009.09.027 CrossRefGoogle Scholar
  4. 4.
    Barten W, Jasiulevicius A, Manera A, Macian-Juan R, Zerkak O (2008) Analysis of the capability of system codes to model cavitation water hammers: simulation of UMSICHT water hammer experiments with TRACE and RELAP5. Nucl Eng Des 238:1129–1145.  https://doi.org/10.1016/j.nucengdes.2007.10.004 CrossRefGoogle Scholar
  5. 5.
    Bergant A, Simpson AR, Vitkovsky J (2001) Development in unsteady pipe flow friction modeling. J Hydraul Res 39(3):249–257CrossRefGoogle Scholar
  6. 6.
    Bergant A, Tijsseling A (2001) Parameters affecting water hammer wave attenuation, shape and timing. Proc. 10th Intl. IAHR Work Group on Behavior of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim. (Paper C2, 12)Google Scholar
  7. 7.
    Chaudhry MH (2014) Applied hydraulic transients. Springer, New York, Heidelberg, Dordrecht, LondonCrossRefGoogle Scholar
  8. 8.
    Duan HF (2015) Uncertainty analysis of transient flow modeling and transient-based leak detection in elastic water pipeline systems. Water Resour Manage 29:5413–5427.  https://doi.org/10.1007/s11269-015-1126-4 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dudlik A, Prasser HM (2009) Water hammer and condensation hammer scenarios in power plants using new measurement system. Forsch Ingenieurwes 73:67–76.  https://doi.org/10.1007/s10010-009-0100-9 CrossRefGoogle Scholar
  10. 10.
    Gad AAM, Mohammed HI (2014) Impact of pipes networks simplification on water hammer phenomenon. Sādhanā 39(5):1227–1244MathSciNetGoogle Scholar
  11. 11.
    Ghidaoui MS, Zhao M, McInnis DA, Axworthy DH (2005) A review of water hammer theory and practice. Appl Mech Rev 58:49.  https://doi.org/10.1115/1.1828050 CrossRefGoogle Scholar
  12. 12.
    Haghighi A, Ramos HM (2012) Detection of leakage freshwater and friction factor calibration in drinking networks using central force optimization. Water Resour Manage 26:2347–2363.  https://doi.org/10.1007/s11269-012-0020-6 CrossRefGoogle Scholar
  13. 13.
    Heinsbroek AGTJ (1997) Fluid-structure interactions in non-rigid pipeline systems. Nucl Eng Des 172:123–135CrossRefGoogle Scholar
  14. 14.
    Himr D (2013) Numerical simulation of water hammer in low pressurized pipe: comparison of SimHydraulics and Lax-Wendroff method with experiment. EPJ Web Conf.  https://doi.org/10.1051/epjconf/20134501037 Google Scholar
  15. 15.
    Holmboe EL, Rouleau WT (1967) The effect of viscous shear on transients in liquid lines. ASME J Basic Eng 89(1):174–180CrossRefGoogle Scholar
  16. 16.
    Hruzík L, Šedenka L, Sikora R (2009) Simulation of pressure amplitude characteristics of pipe with hydraulic accumulator in MATLAB–SimHydraulics. Transactions of the Technical University of Ostrava; mechanical series No. 3, vol. LV article No. 1725Google Scholar
  17. 17.
    Huang YC, Lin CC, Yeh HD (2015) An optimization approach to leak detection in pipe networks using simulated annealing. Water Resour Manage 29(418):5–4201.  https://doi.org/10.1007/s11269-015-1053-4 Google Scholar
  18. 18.
    Kaliatka A, Uspuras E, Vaisnoras M (2004) Justification of RELAP5 code for modeling water hammer phenomenon by employing UMSICHT test facility data. Power Engineering. Lith Acad Sci 3:1–6Google Scholar
  19. 19.
    Kaliatka A, Vaisnoras M (2005) Simulation of water hammer experiments using RELAP5 code. Proceedings of the International Conference on Nuclear Energy for New Europe, Bled, pp 541–549Google Scholar
  20. 20.
    Kaliatka A, Uspuras E, Vaisnoras M (2007) Benchmarking analysis of water hammer effects using RELAP5 code and development of RBMK-1500 reactor main circulation circuit model. Ann Nucl Energy 34:1–12.  https://doi.org/10.1016/j.anucene.2006.11.010 CrossRefGoogle Scholar
  21. 21.
    Kaliatka A, Vaisnoras M, Uspuras E (2010) Water hammer model sensitivity study by the FAST method. Procedia Soc Behav Sci 2:7684–7685.  https://doi.org/10.1016/j.sbspro.2010.05.178 CrossRefGoogle Scholar
  22. 22.
    Kaliatka A, Vaisnoras M, Valinčius M (2014) Modelling of valve induced water hammer phenomena in a district heating system. Comput Fluids 94:30–36CrossRefGoogle Scholar
  23. 23.
    Kochupillai J, Ganesan V, Padmanabhan C (2005) New finite element formulation based on the velocity of flow for water hammer problems. Int J Press Vessel Piping 82:1–14.  https://doi.org/10.1016/j.ijpvp.2004.06.009 CrossRefGoogle Scholar
  24. 24.
    Kucienska B, Seynhaeve JM, Giot M (2008) Friction relaxation model for fast transient flows application to water hammer in two-phase flow—the WAHA code. Int J Multiph Flow 34:188–205.  https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.001 CrossRefGoogle Scholar
  25. 25.
    Marcinkiewicz J, Adamowski A, Lewandowski M (2008) Experimental evaluation of ability of Relap5, Drako®, Flowmaster2TM and program using unsteady wall friction model to calculate water hammer loadings on pipelines. Nucl Eng Des 238:2084–2093.  https://doi.org/10.1016/j.nucengdes.2007.10.027 CrossRefGoogle Scholar
  26. 26.
    MathWorks (2013) Matlab Simulink user’s guide, Simhydraulics user’s guideGoogle Scholar
  27. 27.
    Meniconi S, Brunone B, Ferrante M, Massari C (2011) Small amplitude sharp pressure waves to diagnose pipe systems. Water Resour Manage 25:79–96.  https://doi.org/10.1007/s11269-010-9688-7 CrossRefGoogle Scholar
  28. 28.
    Miller S, Tchkalov V (2014) Real-time simulation of physical systems using Simscape. http://www.mathworks.com/company/newsletters/articles/real-time-simulation-of-physical-systems-using-simscape.html. Accessed 3 Feb 2014Google Scholar
  29. 29.
    Ramos HM, Loureiro D, Lopes A, Fernandes C, Covas D, Reis LF, Cunha MC (2015) Evaluation of Chlorine decay in drinking water systems for different flow conditions: from theory to practice. Water Resour Manage.  https://doi.org/10.1007/s11269-009-9472-8 Google Scholar
  30. 30.
    Rathnayaka S, Shannon B, Rajeev P, Kodikara J (2015) Monitoring of pressure transients in water supply networks. Water Resour Manage.  https://doi.org/10.1007/s11269-015-1172-y Google Scholar
  31. 31.
    Riasi A, Nourbakhsh A, Raisee M (2009) Unsteady turbulent pipe flow due to water hammer using k–θ turbulence model. J Hydraul Res 47(4):429–437CrossRefGoogle Scholar
  32. 32.
    Ricardo AP, Axel EL (2002) A transient shear stress model for the analysis of laminar water-hammer problems. J Hydraul Res 40(1):45–53CrossRefGoogle Scholar
  33. 33.
    Saikia MD, Sarma AK (2006) Numerical modeling of water hammer with variable friction factor. J Eng Appl Sci 1(4):35–40Google Scholar
  34. 34.
    Streeter VL, Wylie EB (1967) Hydraulic transients. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Timoshenko S (1940) Strength of materials, advanced theory and problems. D. Van Nostrand Company, New YorkzbMATHGoogle Scholar
  36. 36.
    Triki A (2015) Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mech.  https://doi.org/10.1007/s00707-015-1493-1 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Urbanowicz K, Zarzycki Z (2012) New efficient approximation of weighting functions for simulations of unsteady friction losses in liquid pipe flow. J Theor Appl Mech 50(2):487–508Google Scholar
  38. 38.
    Vardy AE, Hwang KL (1991) A characteristics model of transient friction in pipes. J Hydraul Res 29(5):669–684CrossRefGoogle Scholar
  39. 39.
    Vítkovský J, Stephens M, Bergant A, Lambert M, Simpson A (2004) Efficient and accurate calculation of zielke and vardy-brown unsteady friction in pipe transients. Proceedings of the 9th International Conference on Pressure Surges, BHR Group, Chester, pp 405–419Google Scholar
  40. 40.
    Vítkovský J, Bergant A, Simpson AR, Lambert F (2006) Systematic evaluation of one-dimensional unsteady friction models in simple pipelines. J Hydraul Eng 132(7):696–709.  https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(696) CrossRefGoogle Scholar
  41. 41.
    Young IK (2008) Advanced numerical and experimental transient modeling of water and gas pipeline flows incorporating distributed and local effects. Dissertation, University of AbdelaideGoogle Scholar
  42. 42.
    Wang R, Wang Z, Wang X, Yang H, Sun J (2014) Water hammer assessment techniques for water distribution systems. 12th International Conference on Computing and Control for the Water Industry, CCWI2013. Procedia Eng 70:1717–1725CrossRefGoogle Scholar
  43. 43.
    Wang ZM, Tan SK (1998) Vibration and pressure fluctuation in a flexible hydraulic power system on an aircraft. Comput Fluids 27:1–9CrossRefzbMATHGoogle Scholar
  44. 44.
    Wiggert DC, Hatfield FJ, Struckenbruck S (1987) Analysis of liquid and structural transients in piping by method of characteristics. J Fluids Eng 109:161–165CrossRefGoogle Scholar
  45. 45.
    White FM (1991) Viscous fluid flow. McGraw-Hill, New YorkGoogle Scholar
  46. 46.
    Wylie EB, Streeter VL (1978) Fluid transients. McGraw-Hill, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Rhéologie,Traitement et Transport des Fluides Complexes (LRTTFC), Département d’Hydraulique, Faculté d’Architecture et de Génie CivilUniversité des Sciences et de la Technologie d’Oran – Mohamed Boudiaf – USTO-MBOranAlgeria

Personalised recommendations