Slicing ATL model transformations for scalable deductive verification and fault localization

  • Zheng Cheng
  • Massimo Tisi
FASE 2017


Model-driven engineering (MDE) is increasingly accepted in industry as an effective approach for managing the full life cycle of software development. In MDE, software models are manipulated, evolved and translated by model transformations (MT), up to code generation. Automatic deductive verification techniques have been proposed to guarantee that transformations satisfy correctness requirements (encoded as transformation contracts). However, to be transferable to industry, these techniques need to be scalable and provide the user with easily accessible feedback. In MT-specific languages like ATL, we are able to infer static trace information (i.e., mappings among types of generated elements and rules that potentially generate these types). In this paper, we show that this information can be used to decompose the MT contract and, for each sub-contract, slice the MT to the only rules that may be responsible for fulfilling it. Based on this contribution, we design a fault localization approach for MT, and a technique to significantly enhance scalability when verifying large MTs against a large number of contracts. We implement both these algorithms as extensions of the VeriATL verification system, and we show by experimentation that they increase its industry readiness.


Model driven engineering Model transformation Deductive verification Program slicing Fault localization Scalability 


  1. 1.
    Ab. Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations. Softw. Syst. Model. 14(2), 1003–1028 (2015)CrossRefGoogle Scholar
  2. 2.
    Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010)CrossRefGoogle Scholar
  3. 3.
    Aranega, V., Mottu, J., Etien, A., Dekeyser, J.: Traceability mechanism for error localization in model transformation. In: 4th International Conference on Software and Data Technologies, pp. 66–73. Sofia, Bulgaria (2009)Google Scholar
  4. 4.
    Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier for object-oriented programs. In: 4th International Conference on Formal Methods for Components and Objects, pp. 364–387. Springer, Amsterdam, Netherlands (2006)Google Scholar
  5. 5.
    Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: 2nd International Conference on Software Engineering and Formal Methods, pp. 230–239. IEEE, Beijing, China (2004)Google Scholar
  6. 6.
    Berry, G.: Synchronous design and verification of critical embedded systems using SCADE and Esterel. In: 12th International Workshop on Formal Methods for Industrial Critical Systems, pp. 2–2. Springer, Berlin, Germany (2008)Google Scholar
  7. 7.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Berlin (2010)zbMATHGoogle Scholar
  8. 8.
    Briand, L.C.: Making model-driven verification practical and scalable—experiences and lessons learned. In: 4th International Conference on Model-Driven Engineering and Software Development. SCITEPRESS, Rome, Italy (2016)Google Scholar
  9. 9.
    Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in model transformations. IEEE Trans. Softw. Eng. 41(5), 490–506 (2015)CrossRefGoogle Scholar
  10. 10.
    Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-shelf’ SMT solvers. In: 15th International Conference on Model Driven Engineering Languages and Systems, pp. 198–213. Springer, Innsbruck, Austria (2012)Google Scholar
  11. 11.
    Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations using transformation models and model finders. In: 14th International Conference on Formal Engineering Methods, pp. 198–213. Springer, Kyoto, Japan (2012)Google Scholar
  12. 12.
    Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for certified model transformations. In: 13th Brazilian Symposium on Formal Methods, pp. 112–127. Springer, Natal, Brazil (2011)Google Scholar
  13. 13.
    Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for ATL via translation validation. In: 8th International Conference on Model Transformation, pp. 133–148. Springer, L’Aquila, Italy (2015)Google Scholar
  14. 14.
    Cheng, Z., Monahan, R., Power, J.F.: Formalised EMFTVM bytecode language for sound verification of model transformations. Softw. Syst. Model. (2016).
  15. 15.
    Cheng, Z., Tisi, M.: A deductive approach for fault localization in ATL model transformations. In: 20th International Conference on Fundamental Approaches to Software Engineering, pp. 300–317. Springer, Uppsala, Sweden (2017)Google Scholar
  16. 16.
    Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. ACM SIGPLAN Not. 46(4), 53–64 (2011)CrossRefGoogle Scholar
  17. 17.
    Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transformations using static analysis and constraint solving. In: 25th IEEE International Symposium on Software Reliability Engineering, pp. 34–44. IEEE, Naples, Italy (2014)Google Scholar
  18. 18.
    Cuadrado, J.S., Guerra, E., de Lara, J., Clarisó, R., Cabot, J.: Translating target to source constraints in model-to-model transformations. In: 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, pp. 12–22. IEEE, Austin, TX, USA (2017)Google Scholar
  19. 19.
    Filliâtre, J.C., Paskevich, A.: Why3—where programs meet provers. In: 22nd European Symposium on Programming, pp. 125–128. Springer, Rome, Italy (2013)Google Scholar
  20. 20.
    Harman, M., Binkley, D., Danicic, S.: Amorphous program slicing. J. Syst. Softw. 68(1), 45–64 (2003)CrossRefGoogle Scholar
  21. 21.
    Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.J.: Behavioral interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hidaka, S., Jouault, F., Tisi, M.: On additivity in transformation languages. In: 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems, pp. 23–33. IEEE, Austin, TX, USA (2017)Google Scholar
  23. 23.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)CrossRefzbMATHGoogle Scholar
  24. 24.
    Howard, W.A.: The formulae-as-types notion of construction. In: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press (1980)Google Scholar
  25. 25.
    Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)CrossRefGoogle Scholar
  27. 27.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the specification of model editing operations from meta-models. In: 9th International Conference on Model Transformation, pp. 173–188. Springer, Vienna, Austria (2016)Google Scholar
  29. 29.
    Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation verification. Form. Asp. Comput. 27(1), 193–235 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Leino, K.R.M., Moskal, M., Schulte, W.: Verification condition splitting. (2008)
  31. 31.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer, Budapest, Hungary (2008)Google Scholar
  32. 32.
    Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying transformation contracts for declarative ATL. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, pp. 256–265. IEEE, Ottawa, ON (2015)Google Scholar
  33. 33.
    Object Management Group: Unified modeling language (ver. 2.5). (2015)
  34. 34.
    Poernomo, I.: Proofs-as-model-transformations. In: 1st International Conference on Model Transformation, pp. 214–228. Springer, Zürich, Switzerland (2008)Google Scholar
  35. 35.
    Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. Int. J. Softw. Tools Technol. Transf. 7(2), 156–173 (2005)CrossRefGoogle Scholar
  36. 36.
    Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential OCL invariants to nested graph constraints focusing on set operations. In: 8th International Conference on Graph Transformation, pp. 155–170. Springer, L’Aquila, Italy (2015)Google Scholar
  37. 37.
    Roychoudhury, A., Chandra, S.: Formula-based software debugging. Commun. ACM 59, 68–77 (2016)CrossRefGoogle Scholar
  38. 38.
    Selim, G., Wang, S., Cordy, J., Dingel, J.: Model transformations for migrating legacy models: an industrial case study. In: 8th European Conference on Modelling Foundations and Applications, pp. 90–101. Springer, Lyngby, Denmark (2012)Google Scholar
  39. 39.
    Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework, 2nd edn. Pearson Education, London (2008)Google Scholar
  40. 40.
    Tip, F.: A survey of program slicing techniques. Tech. rep., Centrum Wiskunde & Informatica (1994)Google Scholar
  41. 41.
    Tisi, M., Perez, S.M., Choura, H.: Parallel execution of ATL transformation rules. In: 16th International Conference on Model-Driven Engineering Languages and Systems, pp. 656–672. Springer, Miami, FL, USA (2013)Google Scholar
  42. 42.
    Wagelaar, D.: Using ATL/EMFTVM for import/export of medical data. In: 2nd Software Development Automation Conference. Amsterdam, Netherlands (2014)Google Scholar
  43. 43.
    Weiser, M.: Program slicing. In: 5th International Conference on Software Engineering, pp. 439–449. IEEE, NJ, USA (1981)Google Scholar
  44. 44.
    Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE Trans. Softw. Eng. Pre-Print 99, 1–41 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center INRIA Rennes - Bretagne AtlantiqueRennesFrance
  2. 2.IMT Atlantique, LS2N (UMR CNRS 6004)NantesFrance

Personalised recommendations