Abstract
Novel gel coating consisting of a multifunctional polymer composite membrane as skeleton and an ionic liquid (IL)-containing electrolyte as plasticizer was introduced on the top of sulfur cathode. The effects of introduction of the IL on the basic properties of the electrolyte and gelatinous membrane and electrochemical performances of lithium sulfur battery were investigated. It is found that moderate amount of the IL is conducive to the improvement of ionic conductivity and dissolution restriction of polysulfides in the electrolyte. The composite membrane absorbing the IL-containing electrolyte for gelation sustains favorable porous architecture. As a result, the coated sulfur cathode with the IL modified electrolyte for building the surface gel coating exhibits increased reversible capacity, improved cycle stability, and rate capability, which is distinctly superior to the counterpart employing the pristine electrolyte without the IL.
This is a preview of subscription content, access via your institution.







References
- 1.
Huang Y, Yu R, Mao G, Yu W, Ding Z, Cao Y, Zheng J, Chu D, Tong H (2020) Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. J Alloy Compd 841:155670–155679
- 2.
Ji Y, Zhou C, Lin F, Li B, Yang F, Zhu H, Duan J, Chen Z (2020) Submicron-sized Nb-doped lithium garnet for high ionic conductivity solid electrolyte and performance of quasi-solid-state lithium battery. Materials 13(3):560–570
- 3.
Liu X, Zhao Y, Shi J, Du H, Xu X, Lu H, Che J, Li X (2019) Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J Alloy Compd 799:231–238
- 4.
Wang X, Tan Y, Shen G, Zhang S (2020) Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries. J Energy Chem 41:149–170
- 5.
Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45(20):5605–5634
- 6.
Yuan Y, Li Z, Lu H, Cheng H, Zheng D, Fang Z (2020) Investigation of a hybrid binder constitution for lithium–sulfur battery application. New J Chem 44(25):10648–10653
- 7.
Lu H, Zhu Y, Zheng B, Du H, Zheng X, Liu C, Yuan Y, Fang J, Zhang K (2020) A hybrid ionic liquid-based electrolyte for high-performance lithium–sulfur batteries. New J Chem 44(2):361–368
- 8.
Shen G, Liu Z, Liu P, Duan J, Younus HA, Deng H, Wang X, Zhang S (2020) Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium–sulfur batteries. J Mater Chem A 8(3):1154–1163
- 9.
Wang R, Li J, Zhang Y, Li P, Duan J, Tang M, Yuan C (2020) Improved Li-S batteries obtained by using multifunctional separators modified with vapor grown carbon fiber/MoS2 composites. Ceram Int 46(11):19408–19415
- 10.
Fang J, Qin F, Li J, Zhang K, Liu W, Wang M, Yu F, Zhang L (2015) Improved performance of sulfur cathode by an easy and scale-up coating strategy. J Power Sources 297:265–270
- 11.
Li Y, Yuan L, Li Z, Qi Y, Wu C, Liu J, Huang Y (2015) Improving the electrochemical performance of a lithium–sulfur battery with a conductive polymer-coated sulfur cathode. RSC Adv 5(55):44160–44164
- 12.
Zhang SS (2013) A concept for making poly(ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery. J Electrochem Soc 160:1421–1424
- 13.
Yuan Y, Zheng D, Lu H, Li Z, Dang Y, Fang Z (2020) An effective strategy for interface modification and polysulfide confinement by gel polymer electrolyte coating on the sulfur cathode. J Electrochem Soc 167(10):100550–100558
- 14.
Yuan Y, Zheng D, Lu H, Zhu Y, Li Z, Qin F, Zhang K (2020) A multifunctional gel coating design for simultaneous interface amelioration, polysulfide adsorption and redox regulation in lithium-sulfur batteries. Appl Surf Sci 533:147490–147498
- 15.
Zheng J, Gu M, Chen H, Meduri P, Engelhard M-H, Zhang J-G, Liu J, Xiao J (2013) Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries. J. Mater. Chem. A 1(29):8464–8470
- 16.
Sun K, Wu Q, Tong X, Gan H (2018) Electrolyte with low polysulfide solubility for Li-S batteries. ACS Appl Energy Mater 1(6):2608–2618
- 17.
Pan J, Xu G, Ding B, Chang Z, Wang A, Dou H, Zhang X (2016) PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv 6(47):40650–40655
- 18.
Nagajothi AJ, Kannan R, Rajashabala S (2017) Electrochemical performance of plasticized PEO-LiTf complex-based composite gel polymer electrolytes with the addition of barium titanate. Ionics 24:1407–1414
- 19.
Wang X, Hao X, Hengjing Z, Xia X, Tu J (2020) 3D ultraviolet polymerized electrolyte based on PEO modified PVDF-HFP electrospun membrane for high-performance lithium-sulfur batteries. Electrochim Acta 329:135108–135120
- 20.
Diao Y, Xie K, Xiong S, Hong X (2013) Shuttle phenomenon - the irreversible oxidation mechanism of sulfur active material in Li-S battery. J Power Sources 235:181–186
- 21.
Yuan Y, Zheng D, Fang Z, Lu H, Gou X, Liu H, Liu M (2019) Fabrication of gel polymer electrolyte with polysulfide immobilization effect for lithium sulfur battery. Ionics 25(1):17–24
- 22.
Natarajan A, Stephan AM, Chan CH, Kalarikkal N, Thomas S (2017) Electrochemical studies on composite gel polymer electrolytes for lithium sulfur-batteries. J Appl Polym Sci 134:44954–44601
- 23.
Song H, Yuan H, Chen H, Tang A, Xu G, Liu L, Zhang Z, Kuang Q (2020) Synthesis of TiO2/S@PPy composite for chemisorption of polysulfides in high performance Li-S batteries. J Solid State Electrochem 24(4):997–1006
- 24.
Lu H, Zhu Y, Yuan Y, He L, Zheng B, Zheng X, Liu C, Du H (2021) LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021-05310-0
- 25.
Qu Y, Guo M, Wang X, Yuan C (2019) Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. J Alloy Compd 791:874–882
- 26.
Zhu H, Shen R, Tang Y, Yan X, Liu J, Song L, Fan Z, Zheng S, Chen Z (2020) Sn-doping and Li2SnO3 nano-coating layer Co-modified LiNi0.5Co0.2Mn0.3O2 with improved cycle stability at 4.6 V cut-off voltage. Nanomaterials 10(5):868–878
- 27.
Mao G, Yu W, Zhou Q, Li L, Huang Y, Yao Y, Chu D, Tong H, Guo X (2020) Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Appl Surf Sci 531:147245–147272
Funding
The work is supported by the National Natural Science Foundation of China (Grant Nos. 51704222 and 51604221).
Author information
Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yuan, Y., Li, Z., Peng, X. et al. Advanced sulfur cathode with polymer gel coating absorbing ionic liquid-containing electrolyte. J Solid State Electrochem (2021). https://doi.org/10.1007/s10008-021-04917-x
Received:
Revised:
Accepted:
Published:
Keywords
- Lithium sulfur battery
- Gel coating
- Ionic liquid
- Polysulfide
- Polymer membrane