A bifunctional electrochemical aptasensor based on AuNPs-coated ERGO nanosheets for sensitive detection of adenosine and thrombin

Abstract

A simple and sensitive bifunctional electrochemical aptasensor for detection of adenosine and thrombin has been developed using gold nanoparticles–electrochemically reduced graphene oxide (AuNPs-ERGO) composite film-modified electrode. Firstly, the reduced graphene oxide film and AuNPs were sequentially immobilized on glassy carbon electrode (GCE) surface. Secondly, thrombin aptamer was immobilized on the modified electrode. Finally, adenosine aptamer was hybridized with it to serve as a recognition element and methylene blue (MB) as electrochemical signal indicator. In the presence of adenosine or thrombin, the sensor recognized it and a conformational change was induced in aptamer, resulting in decrease of the peak current of MB. The linear relation between concentration of adenosine or thrombin and peak current of MB allowed quantification of them. Thanks to the special electronic characteristic of AuNPs-ERGO composite film, sensitivity of sensor was greatly improved. Under optimal conditions, the proposed aptasensor presented an excellent performance in a linear range of 25 nM to 750 nM for adenosine and 0.5 nM to 10 nM for thrombin. Detection limits were estimated to be 8.3 nM for adenosine and 0.17 nM for thrombin, respectively. Moreover, dual-analyte detection of adenosine and thrombin was achieved without potentially increasing the complexity and cost of the assay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Zhang D, Ma JJ, Meng XW, Xu ZF, Zhang J, Fang YX, Guo Y (2019) Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo. Anal Chim Acta 1076:55–63

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Urbanová V, Jayaramulu K, Schneemann A, Kment Š, Fischer RA, Zbořil R (2018) Hierarchical porous fluorinated graphene oxide@metal-organic gel composite: label-free electrochemical aptasensor for selective detection of thrombin. ACS Appl Mater Interfaces 10(48):41089–41097

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Xu YY, Zhou WJ, Zhou M, Xiang Y, Yuan R, Chai YQ (2015) Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosens Bioelectron 64:306–310

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Chen ZB, Tan Y, Zhang CM, Yin L, Ma H, Ye NS, Qiang H, Lin YQ (2014) A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens Bioelectron 56:46–50

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Man TT, Lai W, Xiao MS, Wang XW, Chandrasekaran AR, Pei H, Li L (2020) A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens Bioelectron 147:111742

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Zhu Y, Hu XC, Shi S, Gao RR, Huang HL, Zhu YY, Lv XY, Yao TM (2016) Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens Bioelectron 79:205–212

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Zheng J, Li NX, Li CR, Wang XX, Liu YC, Mao GB, Ji XH, He ZK (2018) A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Biosens Bioelectron 107:40–46

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zhang SS, Xia JP, Li XM (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem 80(22):8382–8388

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Jalil O, Pandey CM, Kumar D (2020) Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchim Acta 187(5):275

    CAS  Article  Google Scholar 

  10. 10.

    Zhou ZD, Gu CM, Chen C, Zhao PC, Xie YX, Fei JJ (2019) An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene/mercapto-β-cyclodextrin/Au nanoparticles composite film. Sensors Actuators B Chem 288:88–95

    CAS  Article  Google Scholar 

  11. 11.

    Hanko M, Švorc L, Planková A, Mikuš P (2019) Overview and recent advances in electrochemical sensing of glutathione-a review. Anal Chim Acta 1062:1–27

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Haque AMJ, Park H, Sung D, Jon S, Choi SY, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 84(4):1871–1878

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Shamsipur M, Farzin L, Tabrizi MA (2016) Ultrasensitive aptamer-based on-off assay for lysozyme using a glassy carbon electrode modified with gold nanoparticles and electrochemically reduced graphene oxide. Microchim Acta 183(10):2733–2743

    CAS  Article  Google Scholar 

  14. 14.

    Vinoth V, Wu JJ, Asiri AM, Anandan S (2017) Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason Sonochem 39:363–373

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Fan LF, Zhang CY, Yan WJ, Guo YJ, Shuang SM, Dong C, Bi YP (2019) Design of a facile and label-free electrochemical aptasensor for detection of atrazine. Talanta 201:156–164

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ye YK, Yan WW, Liu YQ, He SD, Cao XD, Xu X, Zheng HS, Gunasekaran S (2019) Electrochemical detection of Salmonella using an invA genosensor on polypyrrole-reduced graphene oxide modified glassy carbon electrode and AuNPs-horseradish peroxidase-streptavidin as nanotag. Anal Chim Acta 1074:80–88

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Yang SH, Zhang FF, Liang QL, Wang ZH (2018) A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection. Biosens Bioelectron 120:85–92

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Yang JM, Li XL, Jiang BY, Yuan R, Xiang Y (2020) In situ-generated multivalent aptamer network for efficient capture and sensitive electrochemical detection of circulating tumor cells in whole blood. Anal Chem 92(11):7893–7899

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Zhang LL, Zhang XY, Feng PJ, Han Q, Liu W, Lu Y, Song CX, Li FY (2020) Photodriven regeneration of G-Quadruplex aptasensor for sensitively detecting thrombin. Anal Chem 92(11):7419–7424

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Qi LJ, Han X, Du Y (2020) Improved sensitivity for ratiometric fluorescence detection of ricin based on “kinetic competition” aptasensing strategy. Sensors Actuators B Chem 314:128073

    CAS  Article  Google Scholar 

  21. 21.

    Xiang WW, Lv QX, Shi HX, Xie B, Gao L (2020) Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 214:120716

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127(34):11906–11907

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94

    CAS  Article  Google Scholar 

  26. 26.

    Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79(4):1466–1473

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zhu C, Li LS, Wang ZJ, Irfan M, Qu F (2020) Recent advances of aptasensors for exosomes detection. Biosens Bioelectron 160:112213

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Ding LH, Wu YJ, Liu W, Liu L, Yu F, Yu SC, Tian YM, Feng JD, He LL (2019) Magnetic-assisted self-assembled aptamer/protein hybrid probes for efficient capture and rapid detection of cancer cells in whole blood. Talanta 205:120129

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Zhu XH, Zeng LX, Xu MT, Liang Y, Nan JM (2012) A glassy carbon electrode modified with electrochemically reduced graphene for simultaneous determination of guanine and adenine. Anal Methods 4(9):2935–2939

    CAS  Article  Google Scholar 

  32. 32.

    Dong YP, Zhou Y, Wang J, Zhu JJ (2016) Electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+ electrogenerated chemiluminescence and gold nanoparticles/graphene oxide nanocomposites with graphene oxide as coreactant and its sensing application. Anal Chem 88(10):5469–5475

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Edris NMMA, Abdullah J, Kamaruzaman S, Saiman MI, Sulaiman Y (2018) Electrochemical reduced graphene oxide-poly(eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab J Chem 11(8):1301–1312

    Article  CAS  Google Scholar 

  34. 34.

    Yang SL, Lu ZZ, Luo SL, Liu CB, Tang YH (2013) Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchim Acta 180(1-2):127–135

    CAS  Article  Google Scholar 

  35. 35.

    Wang J, Li BZ, Lu QY, Li XY, Weng CY, Yan XQ, Hong JL, Zhou XM (2019) A versatile fluorometric aptasensing scheme based on the use of a hybrid material composed of polypyrrole nanoparticles and DNA-silver nanoclusters: application to the determination of adenosine, thrombin, or interferon-gamma. Microchim Acta 186(6):356

    Article  CAS  Google Scholar 

  36. 36.

    Feng CJ, Hou Z, Jiang W, Sang LH, Wang L (2016) Binding induced colocalization activated hybridization chain reaction on the surface of magnetic nanobead for sensitive detection of adenosine. Biosens Bioelectron 86:966–970

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Sun JW, Jiang W, Zhu J, Li W, Wang L (2015) Label-free fluorescence dual-amplified detection of adenosine based on exonuclease III-assisted DNA cycling and hybridization chain reaction. Biosens Bioelectron 70:15–20

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Xu SC, Man BY, Jiang SZ, Wang JH, Wei J, Xu SD, Liu HP, Gao SB, Liu HL, Li ZH, Li HS, Qiu HW (2015) Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl Mater Interfaces 7(20):10977–10987

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Xu SC, Jiang SZ, Wang JH, Wei J, Yue WW, Ma Y (2016) Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sensors Actuators B Chem 222:1175–1183

    CAS  Article  Google Scholar 

  40. 40.

    Sun QQ, Yan F, Su B (2018) Label-free electrochemical biosensors based on 3,3′,5,5′-tetramethylbenzidine responsive isoporous silica-micelle membrane. Biosens Bioelectron 105:129–136

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Li F, Du ZF, Yang LM, Tang B (2013) Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe. Biosens Bioelectron 41:907–910

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Gao BB, Tang LTY, Zhang DG, Xie ZY, Su EB, Liu H, Gu ZZ (2017) Transpiration-inspired fabrication of opal capillary with multiple heterostructures for multiplex aptamer-based fluorescent assays. ACS Appl Mater Interfaces 9(38):32577–32582

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Du F, Alam MN, Pawliszyn J (2014) Aptamer-functionalized solid phase microextraction-liquid chromatography/tandem mass spectrometry for selective enrichment and determination of thrombin. Anal Chim Acta 845:45–52

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (21778041).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Zilin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hu, P., Tang, J. et al. A bifunctional electrochemical aptasensor based on AuNPs-coated ERGO nanosheets for sensitive detection of adenosine and thrombin. J Solid State Electrochem (2021). https://doi.org/10.1007/s10008-021-04916-y

Download citation

Keywords

  • Aptasensor
  • Gold nanoparticles
  • Electrochemical-reduced graphene oxide
  • Adenosine
  • Thrombin