Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries: synthesis, structures, and electrochemical properties

Abstract

A series of novel KxNa0.6-xMn0.35Fe0.35Co0.3O2 (x = 0, 0.005, 0.01, 0.05, 0.1) materials were successfully synthesized by the solid-state reaction method. The newly prepared cathode materials were examined by means of X-ray diffraction. They were characterized by scanning electron microscopy (SEM-EDS) and inductively coupled plasma mass spectrometry (ICP-OES). Their electrochemical performances for sodium-ion batteries were tested. The effects of varying K+ doping content on the electrochemical battery performance on the prepared cathode materials were investigated. It was found that the potassium-doped K0.01Na0.59Mn0.35Fe0.35Co0.3O2 showed the best electrochemical performance with an initial discharge capacity of 138.0 mAh g−1 among them. The capacity retention after 20 cycles for Na0.6Mn0.35Fe0.35Co0.3O2 (without K+ doping) was 87.6%. After the potassium doped, the capacity retentions for K0.01Na0.59Mn0.35Fe0.35Co0.3O2 and K0.005Na0.595Mn0.35Fe0.35Co0.3O2 compounds were 90.8% and 90.6% respectively. These results proved that the appropriate amount of K+ doping could be a feasible strategy to increase the cycling stability performance of layered cathode for sodium-ion battery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Liang Y, Zi Zhao C, Yuan H, Chen Y, Zhang W, Qi Huang J, Yu D, Liu Y, Titirici MM, Chueh YL, Yu H, Zhang Q (2019) A review of rechargeable batteries for portable electronic devices. Wiley 1:6–32

    CAS  Google Scholar 

  2. 2.

    Senthilkumar B, Rambabu A, Murugesan C, Krupanidhi SB, Barpanda P (2020) Iron-based mixed phosphate Na4Fe3(PO4)2P2O7 thin films for sodium-ion micro batteries. ACS Omega 5(13):7219–7224

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    CAS  Article  Google Scholar 

  4. 4.

    Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium ion batteries. J Mater Chem A 3(41):20708–20714

    CAS  Article  Google Scholar 

  5. 5.

    Khan Z, Vagin M, Crispin X (2020) Can hybrid Na–air batteries outperform nonaqueous Na–O2 batteries? Adv Sci 7(5):1902866

    CAS  Article  Google Scholar 

  6. 6.

    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Am Chem Soc Chem Rev 114(23):11636–11682

    CAS  Article  Google Scholar 

  7. 7.

    Llave E, Borge V, Park KJ, Hwang JY, Sun YK, Hartmann P, Chesneau FF, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. Am Chem Soc Appl Mater Interfaces 8(3):1867–1875

    Article  CAS  Google Scholar 

  8. 8.

    Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6(19):1600943

    Article  CAS  Google Scholar 

  9. 9.

    Kim SW, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721

    CAS  Article  Google Scholar 

  10. 10.

    Slater MD, Kim D, Lee E, Johnson C-S (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    CAS  Article  Google Scholar 

  11. 11.

    Li F, Wei Z, Manthiram A, Fenf Y, Ma J, Mai L (2019) Sodium based batteries from critical materials to battery systems. J Mater Chem A 7(16):9406–9431

    CAS  Article  Google Scholar 

  12. 12.

    Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448

    CAS  Article  Google Scholar 

  13. 13.

    Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688

    CAS  Article  Google Scholar 

  14. 14.

    Huang Q, Foo ML, Lynn JW, Zandbergen HW, Lawes G, Wang Y, Toby BH, Ramirez AP, Ong NP, Cava RJ (2004) Low temperature phase transitions and crystal structure of Na05CoO2. J Phys Condens Matter 16(32):5803–5814

    CAS  Article  Google Scholar 

  15. 15.

    Su D, Wang C, Ahn HJ, Wang G (2013) Single crystalline Na07MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem Eur J 19(33):10884–10889

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) The P2-Na2/3Co2/3Mn1/3O2 phase structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40(36):9306–9312

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Caballero A, Hernán L, Morales J, Sánchez L, Peña JS, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12(4):1142–1147

    CAS  Article  Google Scholar 

  18. 18.

    Liu H, Xu J, Ma C, Meng YS (2015) A new O3-type layered oxide cathode with high energy/power density for rechargeable Na batteries. Chem Commun 51(22):4693–4696

    CAS  Article  Google Scholar 

  19. 19.

    Mu L, Xu S, Li Y, Hu YS, Li H, Chen L, Huang X (2015) Prototype sodium-ion batteries using an air-stable and co/Ni-free O3-layered metal oxide cathode. Adv Mater 27(43):6928–6933

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Xu SY, Wu XY, Li YM, Hu YS, Chen LQ (2014) Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin Phys B23:118202

    Article  CAS  Google Scholar 

  21. 21.

    Mu LQ, Hu YS, Chen LQ (2015) New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries. Chin Phys B24:038202

    Article  CAS  Google Scholar 

  22. 22.

    Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na.044MnO2. Inorg Chem 46(8):3289–3294

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Jiang X, Liu S, Xu H, Chen L, Yang J, Qian Y (2015) Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries. Chem Commun 51(40):8480–8483

    CAS  Article  Google Scholar 

  24. 24.

    Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 49(46):8738–8742

    CAS  Article  Google Scholar 

  25. 25.

    Reynaud M, Barpanda P, Rousse G, Chotard JN, Melot BC, Recham N, Tarascon JM (2012) Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn). Solid State Sci 14(1):15–20

    CAS  Article  Google Scholar 

  26. 26.

    Moreau P, Guyomard D, Gaubicher J, Boucher F (2010) Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 22(14):4126–4128

    CAS  Article  Google Scholar 

  27. 27.

    Barker J, Saidi MY, Swoyer JL (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Solid-State Lett 6(1):A1–A4

    CAS  Article  Google Scholar 

  28. 28.

    Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80

    CAS  Article  Google Scholar 

  29. 29.

    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15(9):3304–3312

    CAS  Article  Google Scholar 

  31. 31.

    Yoshida H, Yabuuchi N, Komaba S (2013) NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem Commun 34:60–63

    CAS  Article  Google Scholar 

  32. 32.

    Yang P, Zhang C, Li M, Yang X, Wang C, Bie X, Wei Y, Chen G, Du F (2015) P2-NaCo0.5Mn0.5O2 as a positive electrode material for sodium-ion batteries. Chem Phys Chem 16(16):3408–3412

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Thorne JS, Dunlap RA, Obrovac MN (2014) Investigation of P2- Na2/3Mn1/3Fe1/3Co1/3O2 for Na-ion battery positive electrodes. J Electrochem Soc 161(14):A2232–A2236

    CAS  Article  Google Scholar 

  34. 34.

    Guo S, Yu H, Liu D, Tian W, Liu X, Hanada N, Ishida M, Zhou H (2014) A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chem Commun 50(59):7998–8001

    CAS  Article  Google Scholar 

  35. 35.

    Yoshida H, Yabuuchi N, Kubota K, Ikeuchi I, Garsuch A, Schulz-Dobrick M, Komaba S (2014) P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun 50(28):3677–3680

    CAS  Article  Google Scholar 

  36. 36.

    Jung KN, Choi JY, Shin HS, Huu HT, Im WB (2020) Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries. Solid State Sci 106:106334

    CAS  Article  Google Scholar 

  37. 37.

    Han MH, Gonzalo E, Sharma N, López del Amo JM, Armand M, Avdeev M, Saiz Garitaonandia JJ, Rojo T (2016) High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chem Mater 28(1):106–116

    CAS  Article  Google Scholar 

  38. 38.

    Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6(13):10330–10341

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Liu Z, Sun L, Yang W, Yang J, Han S, Chen D, Liu Y, Liu X (2015) The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery. Solid State Sci 44:39–44

    CAS  Article  Google Scholar 

  40. 40.

    Yan W, Yang S, Huang Y, Yang Y, Yuan G (2019) A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. J Alloys Compd 819:153048

    Article  CAS  Google Scholar 

  41. 41.

    Li L, Liu X, Tang L, Liu H, Wang YG (2019) Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. J Alloys Compd 790:203–211

    CAS  Article  Google Scholar 

  42. 42.

    Wu F, Liu L, Yuan Y, Li Y, Bai Y, Li T, Lu J, Wu C (2018) Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS Appl Mater Interfaces 10(32):27030–27038

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Gençtürk S, Uzun D, Yeşilot S (2020) Investigation of sodium content on the electrochemical performance of the Nax(Fe0.35Mn0.35Co0.3)O2 (x = 0.5, 0.6, 0.7, 0.8, 0.9) for sodium-ion batteries. Ionics 26(1):223–231

    Article  CAS  Google Scholar 

  44. 44.

    Satyavani TVSL, Kumar AS, Rao PSVS (2016) Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries. A review. Eng Sci Technol Int J 19(1):178–188

    Google Scholar 

  45. 45.

    Vaalma C, Buchholz D, Passerini S (2017) Beneficial effect of boron in layered sodium-ion cathode materials - the example of Na2/3B0.11Mn0.89O2. J Power Sources 364:33–40

    CAS  Article  Google Scholar 

  46. 46.

    Jacobsson TJ, Pazoki M, Hagfeldt A, Edvinsson T (2015) Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3. J Phys Chem C 119(46):25673–25683

    CAS  Article  Google Scholar 

  47. 47.

    Bucher N, Hartung S, Nagasubramanian A, Cheah YL, Hoster HE, Madhavi S (2014) Layered NaxMnO2+z in sodium ion batteries influence of morphology on cycle performance. ACS Appl Mater Interfaces 6(11):8059–8065

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Wang K, Wu ZG, Zhang T, Deng YP, Li JT, Guo XD, Xu BB, Zhong BH (2016) P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochim Acta 216:51–57

    CAS  Article  Google Scholar 

  49. 49.

    Cao Y, Liu Y, Zhao D, Zhang J, Xia X, Chen T, Zhang LC, Qin P, Xia Y (2019) K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery. J Alloys Compd 784:939–946

    CAS  Article  Google Scholar 

  50. 50.

    Meng J, Liu Z, Niu C, Xu X, Liu X, Zhang G, Wang X, Huang M, Yu Y, Mai L (2020) Synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J Mater Chem. https://doi.org/10.1039/C6TA00556J

  51. 51.

    Lim SJ, Han DW, Nam DH, Hong KS, Eom JY, Ryu WH, Kwon HS (2014) Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A 2(46):19623–19632

    CAS  Article  Google Scholar 

  52. 52.

    Wu J, Xu Y, Sun X, Wang C, Zhang B, Zhao J (2018) The multiple effects of potassium doping on LiVPO4F/C composite cathode material for lithium ion batteries. J Power Sources 39:6155–6163

    Google Scholar 

  53. 53.

    Liu C, Wu M, Guo Z, Luo X, Ji H, Yang G, Hou W (2020) Preparation and characterization of Li1.167-xKxMn0.583Ni0.25O2 (x = 0, 0025, 005 and 0075) as cathode materials for highly reversible lithium-ion batteries. Electrochim Acta 341:136014

    CAS  Article  Google Scholar 

  54. 54.

    Sehrawat D, Cheong S, Rawal A, Glushenkov AM, Brand HEA, Cowie B, Gonzalo E, Rojo T, Naeyaert PJP, Ling CD, Avdeev M, Sharma N (2019) Investigation of K modified P2 Na0.7Mn0.8Mg0.2O2 as a cathode material for sodium-ion batteries. Cryst Eng Comm 21:172

    CAS  Article  Google Scholar 

Download references

Acknowledgments

All work in this study is accomplished at the TUBITAK Marmara Research Center Battery Technologies Laboratory.

Funding

The authors gratefully acknowledge the support provided by the Ministry of Development of Turkey for the financial support within the frame of the Research Project 2014K121080. Serap Gençtürk Tosun acknowledges support from TUBITAK BIDEB National Scholarship Programme for Ph.D. Students (2228-B).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serkan Yeşilot.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tosun, S.G., Uzun, D. & Yeşilot, S. Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries: synthesis, structures, and electrochemical properties. J Solid State Electrochem (2021). https://doi.org/10.1007/s10008-021-04906-0

Download citation

Keywords

  • Sodium-ion battery
  • Cathode material
  • Layered oxide
  • K+ doping
  • Electrochemical performance