Spectroelectrochemical and electrochromic behavior of poly(methylene blue) and poly(thionine)-modified multi-walled carbon nanotubes


The increasing efforts devoted to fabricating electrochromic (EC) devices have motivated a lot of studies to develop new EC materials. Herein, we introduce two poly(phenothiazine)-type redox active polymer films as new EC materials. Poly(methylene blue) (PMB) and poly(thionine) (PTH) films were electrochemically deposited onto the transparent fluorine-doped tin oxide (FTO) electrode modified with multi-walled carbon nanotubes (MWCNTs), which are named as FTO/MWCNTs/PMB and FTO/MWCNTs/PTH, respectively. The as-prepared polymer films were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), cyclic voltammetry (CV), and spectroelectrochemical techniques. Both polymer films exhibited EC behavior at approximately 600 nm. PMB and PTH films are blue and pale purple, respectively, in the oxidized state and change their color to colorless, if reduced at − 0.6 V. In particular, FTO/MWCNTs/PMB showed a satisfactory ΔT (24%) at 600 nm. The obtained results demonstrate that PMB and PTH, as derivatives of phenothiazine dyes, can be introduced as novel EC materials.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Xu W, Kwok KS, Gracias DH (2018) Ultrathin shape change smart materials. Acc Chem Res 51(2):436–444

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110(1):268–320

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Azens A, Granqvist CG (2003) Electrochromic smart windows: energy efficiency and device aspects. J Solid State Electrochem 7(2):64–68

    CAS  Article  Google Scholar 

  4. 4.

    Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24(30):4071–4096

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Kattouf B, Ein-Eli Y, Siegmann A, Frey GL (2013) Hybrid mesostructured electrodes for fast-switching proton-based solid state electrochromic devices. J Mater Chem C 1(1):151–159

    CAS  Article  Google Scholar 

  6. 6.

    Wen RT, Niklasson GA, Granqvist CG (2015) Sustainable rejuvenation of electrochromic WO3 films. ACS Appl Mater Interfaces 7(51):28100–28104

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Eren E, Aydın MF, Oksuz AU (2020) A practical approach for generation of WO3-based flexible electrochromic devices. J Solid State Electrochem 24(4):1057–1065

    CAS  Article  Google Scholar 

  8. 8.

    Patil RA, Devan RS, Liou Y, Ma YR (2016) Efficient electrochromic smart windows of one-dimensional pure brookite TiO2 nanoneedles. Sol Energy Mater Sol Cells 147:240–245

    CAS  Article  Google Scholar 

  9. 9.

    Nguyen TD, Yeo LP, Mandler D, Magdassi S, Yoong Tok AI (2019) Electrodeposition of amorphous WO3 on SnO2-TiO2 inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window. RSC Adv 9(29):16730–16737

    CAS  Article  Google Scholar 

  10. 10.

    Ikeda T, Higuchi M (2011) Electrochromic properties of polythiophene polyrotaxane film. Langmuir 27(7):4184–4189

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Chu J, Lu D, Wu B, Wang X, Gong M, Zhang R, Xiong S (2018) Synthesis and electrochromic properties of conducting polymers: polyaniline directly grown on fluorine-doped tin oxide substrate via hydrothermal techniques. Sol Energy Mater Sol Cells 177:70–74

    CAS  Article  Google Scholar 

  12. 12.

    Akyüz D, Koca A (2020) Phthalocyanine-aniline dyad constructed with click electrochemistry: a novel hybrid electrochromic material. J Solid State Electrochem 24(2):431–440

    Article  CAS  Google Scholar 

  13. 13.

    Ghoorchian A, Tavoli F, Alizadeh N (2017) Long-term stability of nanostructured polypyrrole electrochromic devices by using deep eutectic solvents. J Electroanal Chem 807:70–75

    CAS  Article  Google Scholar 

  14. 14.

    Da Silva AJC, Ribeiro Nogueira FA, Tonholo J, Ribeiro AS (2011) Dual-type electrochromic device based on polypyrrole and polythiophene derivatives. Sol Energy Mater Sol Cells 95(8):2255–2259

    Article  CAS  Google Scholar 

  15. 15.

    Tutuncu E, Ozkut MI, Balci B, Berk H, Cihaner A (2019) Electrochemical and optical characterization of a multielectrochromic copolymer based on 3, 4-ethylenedioxythiophene and functionalized dithienylpyrrole derivative. Eur Polym J 110:233–239

    CAS  Article  Google Scholar 

  16. 16.

    Inzelt G (2017) Recent advances in the field of conducting polymers. J Solid State Electrochem 21(7):1965–1975

    CAS  Article  Google Scholar 

  17. 17.

    Wu J-T, Fan Y-Z, Liou G-S (2019) Synthesis, characterization and electrochromic properties of novel redox triarylamine-based aromatic polyethers with methoxy protecting groups. Polym Chem 10(3):345–350

    CAS  Article  Google Scholar 

  18. 18.

    Ma F, Liu F, Hou Y, Niu H, Wang C (2020) Electrochromic materials based on novel polymers containing triphenylamine units and benzo [c][1, 2, 5] thiadiazole units. Synth Met 259:116235

    CAS  Article  Google Scholar 

  19. 19.

    Ferreira LDL, Calado HDR (2018) Electrochromic and spectroelectrochemical properties of polythiophene β-substituted with alkyl and alkoxy groups. J Solid State Electrochem 22(5):1507–1515

    Article  CAS  Google Scholar 

  20. 20.

    Giribabu K, Suresh R, Manigandan R, Munusamy S, Kumar SP, Muthamizh S, Narayanan V (2013) Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode. Analyst 138(19):5811–5818

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Ma X, Chao M (2014) Rapid voltammetric determination of maltol in some foods and beverages using a poly(methylene blue)/graphene-modified glassy carbon electrode. J Solid State Electrochem 18(3):621–628

    CAS  Article  Google Scholar 

  22. 22.

    Hosu O, Bârsan MM, Cristea C, Săndulescu R, Brett CMA (2017) Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochim Acta 232:285–295

    CAS  Article  Google Scholar 

  23. 23.

    Liu C, Huang J, Wang L (2018) Electrochemical synthesis of a nanocomposite consisting of carboxy-modified multi-walled carbon nanotubes, polythionine and platinum nanoparticles for simultaneous voltammetric determination of myricetin and rutin. Microchim Acta 185(9):414

    Article  CAS  Google Scholar 

  24. 24.

    Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480

    CAS  Article  Google Scholar 

  25. 25.

    Moore CE, Inzelt G (2015) Electrochemical nanogravimetric study on the sorption processes occurring in multiwalled carbon nanotube layers immobilized on a gold surface. J Solid State Electrochem 19(1):45–56

    CAS  Article  Google Scholar 

  26. 26.

    Pakapongpan S, Palangsuntikul R, Surareungchai W (2011) Electrochemical sensors for hemoglobin and myoglobin detection based on methylene blue-multiwalled carbon nanotubes nanohybrid-modified glassy carbon electrode. Electrochim Acta 56(19):6831–6836

    CAS  Article  Google Scholar 

  27. 27.

    Ghica ME, Brett CMA (2014) Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta 130:198–206

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Gouveia-Caridade C, Pauliukaite R, Brett CM (2008) Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol. Electrochim Acta 53(23):6732–6739

    CAS  Article  Google Scholar 

  29. 29.

    Karadas N, Sanli S, Akmese B, Dogan-Topal B, Can A, Ozkan SA (2013) Analytical application of polymethylene blue-multiwalled carbon nanotubes modified glassy carbon electrode on anticancer drug irinotecan and determination of its ionization constant value. Talanta 115:911–919

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Dilgin Y, Dursun Z, Nisli G, Gorton L (2005) Photoelectrochemical investigation of methylene blue immobilised on zirconium phosphate modified carbon paste electrode in flow injection system. Anal Chim Acta 542(2):162–168

    CAS  Article  Google Scholar 

  31. 31.

    Pfaffen V, Ortiz PI, de Torresi SC, Torresi RM (2010) On the pH dependence of electroactivity of poly (methylene blue) films. Electrochim Acta 55(5):1766–1771

    CAS  Article  Google Scholar 

  32. 32.

    Ehsani A, Ajami N, Babaei F, Mostaanzadeh H (2014) Electrosynthesis and characterization of poly methylene blue and its nanocomposite with ZnO nanoparticles. Synth Met 197:80–85

    CAS  Article  Google Scholar 

  33. 33.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford CT. doi:citeulike-article-id:9096580

  34. 34.

    Dennington R, Keith T, Millam J (2009) GaussView 5.0.9. Semichem Inc., Shawnee Missouri, KS

  35. 35.

    Schlereth DD, Schuhmann W, Schmidt H-L (1995) Spectroelectrochemical characterization of ultra-thin films formed by electropolymerization of phenothiazine derivatives on transparent gold electrodes. J Electroanal Chem 381(1-2):63–70

    Article  Google Scholar 

  36. 36.

    Barsan MM, Pinto EM, Brett CM (2008) Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors. Electrochim Acta 53(11):3973–3982

    CAS  Article  Google Scholar 

  37. 37.

    Wang J-Y, Nien P-C, Chen C-H, Chen L-C, Ho K-C (2012) A glucose bio-battery prototype based on a GDH/poly (methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. Bioresour Technol 116:502–506

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Umasankar Y, Chen SM (2008) Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sensors Actuators B Chem 130(2):739–749

    Article  CAS  Google Scholar 

  39. 39.

    Ghapanvari M, Madrakian T, Afkhami A, Ghoorchian A (2020) A modified carbon paste electrode based on Fe 3 O 4@ multi-walled carbon nanotubes@ polyacrylonitrile nanofibers for determination of imatinib anticancer drug. J Appl Electrochem 50(2):281–294

    CAS  Article  Google Scholar 

  40. 40.

    Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43(6):1239–1245

    CAS  Article  Google Scholar 

  41. 41.

    Li X, Zhong M, Sun C, Luo Y (2005) A novel bilayer film material composed of polyaniline and poly (methylene blue). Mater Lett 59(29-30):3913–3916

    CAS  Article  Google Scholar 

  42. 42.

    Yang T, Hu Y, Li W, Jiao K (2011) Single stranded DNA-guided electropolymerization of polythionine nanostrip to the sensing of H2O2. Colloids Surf B 83(1):179–182

    CAS  Article  Google Scholar 

  43. 43.

    Zhao C, Jiang Z, Cai X, Lin L, Lin X, Weng S (2015) Ultrasensitive and reliable dopamine sensor based on polythionine/AuNPs composites. J Electroanal Chem 748:16–22

    CAS  Article  Google Scholar 

  44. 44.

    Kaplan İH, Dağcı K, Alanyalıoğlu M (2010) Nucleation and growth mechanism of electropolymerization of methylene blue: The effect of preparation potential on poly (methylene blue) structure. Electroanalysis 22(22):2694–2701

    CAS  Article  Google Scholar 

  45. 45.

    Topçu E, Alanyalıoğlu M (2014) Electrochemical formation of poly (thionine) thin films: the effect of amine group on the polymeric film formation of phenothiazine dyes. J Appl Polym Sci 131(1):39686–39695

    Article  CAS  Google Scholar 

  46. 46.

    Wu L, McIntosh M, Zhang X, Ju H (2007) Amperometric sensor for ethanol based on one-step electropolymerization of thionine–carbon nanofiber nanocomposite containing alcohol oxidase. Talanta 74(3):387–392

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Xiao X, Zhou B, Zhu L, Xu L, Tan L, Tang H, Zhang Y, Xie Q, Yao S (2012) An reagentless glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on poly(methylene blue) doped silica nanocomposites. Sensors Actuators B Chem 165(1):126–132

    CAS  Article  Google Scholar 

  48. 48.

    Lu G, Shi G (2006) Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J Electroanal Chem 586(2):154–160

    CAS  Article  Google Scholar 

  49. 49.

    Ilangeswaran D, Manisankar P (2013) Electrochemical synthesis, characterization and electrochromic behavior of poly(4-aminodiphenylamine-co-4,4′-diaminodiphenyl sulfone). Electrochim Acta 87:895–904

    CAS  Article  Google Scholar 

  50. 50.

    Pokrop R, Verilhac J-M, Gasior A, Wielgus I, Zagorska M, Travers J-P, Pron A (2006) Effect of molecular weight on electronic, electrochemical and spectroelectrochemical properties of poly (3, 3 ″-dioctyl-2, 2′∶ 5′, 2 ″-terthiophene). J Mater Chem 16(30):3099–3106

    CAS  Article  Google Scholar 

  51. 51.

    Astratine L, Magner E, Cassidy J, Betts A (2012) Characterization and electrochromic properties of poly (2, 3, 5, 6-tetrafluoroaniline): progress towards a transparent conducting polymer. Electrochim Acta 74:117–122

    CAS  Article  Google Scholar 

  52. 52.

    Camurlu P (2014) Polypyrrole derivatives for electrochromic applications. RSC Adv 4(99):55832–55845

    CAS  Article  Google Scholar 

  53. 53.

    Ferreira J, Santos M, Matos R, Ferreira O, Rubira A, Girotto E (2006) Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes. J Electroanal Chem 591(1):27–32

    CAS  Article  Google Scholar 

  54. 54.

    Hichem H, Djamila A, Hania A (2013) Optical, electrical and photoelectrochemical characterization of electropolymerized poly methylene blue on fluorine doped tin oxide conducting glass. Electrochim Acta 106:69–74

    CAS  Article  Google Scholar 

  55. 55.

    Manasa G, Mascarenhas RJ, Satpati AK, D'Souza OJ, Dhason A (2017) Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Mater Sci Eng C 73:552–561

    CAS  Article  Google Scholar 

  56. 56.

    Lee S-K, Mills A (2003) Novel photochemistry of leuco-methylene blue. Chem Commun 18:2366–2367

    Article  CAS  Google Scholar 

  57. 57.

    Yang R, Ruan C, Dai W, Deng J, Kong J (1999) Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly (thionine). Electrochim Acta 44(10):1585–1596

    CAS  Article  Google Scholar 

  58. 58.

    Nunes M, Araújo M, Fonseca J, Moura C, Hillman R, Freire C (2016) High-performance electrochromic devices based on poly [Ni (salen)]-type polymer films. ACS Appl Mater Interfaces 8(22):14231–14243

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Amb CM, Dyer AL, Reynolds JR (2011) Navigating the color palette of solution-processable electrochromic polymers. Chem Mater 23(3):397–415

    CAS  Article  Google Scholar 

  60. 60.

    Wu T-Y, Liao J-W, Chen C-Y (2014) Electrochemical synthesis, characterization and electrochromic properties of indan and 1, 3-benzodioxole-based poly (2, 5-dithienylpyrrole) derivatives. Electrochim Acta 150:245–262

    CAS  Article  Google Scholar 

  61. 61.

    Liu Y, Liu L, Ren B, Zhu X, Zhou W, Li W (2019) Novel low color poly(ester imides) with triphenylamine and carbazole substituents for electrochromic applications. Dyes Pigments 162:232–242

    CAS  Article  Google Scholar 

  62. 62.

    Pande GK, Kim N, Choi JH, Balamurugan G, Moon HC, Park JS (2019) Effects of counter ions on electrochromic behaviors of asymmetrically substituted viologens. Sol Energy Mater Sol Cells 197:25–31

    CAS  Article  Google Scholar 

  63. 63.

    Ponnapati R, Felipe MJ, Muthalagu V, Puno K, Wolff B, Advincula R (2012) Conjugated polymer network films of poly(p -phenylene vinylene) with hole-transporting carbazole pendants: dual photoluminescence and electrochromic behavior. ACS Appl Mater Interfaces 4(3):1211–1218

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Ravelli D, Dondi D, Fagnoni M, Albini A, Bagno A (2011) Predicting the UV spectrum of polyoxometalates by TD-DFT. J Comput Chem 32(14):2983–2987

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references


This work has been supported by grants from the Bu-Ali Sina University Research Council, the Iran National Science Foundation (INSF, Grant No. 97009978), and Centre of Excellence in Development of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS).

Author information



Corresponding author

Correspondence to Tayyebeh Madrakian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 1263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghoorchian, A., Madrakian, T., Afkhami, A. et al. Spectroelectrochemical and electrochromic behavior of poly(methylene blue) and poly(thionine)-modified multi-walled carbon nanotubes. J Solid State Electrochem (2021). https://doi.org/10.1007/s10008-021-04901-5

Download citation


  • Spectroelectrochemistry
  • Electrochromic behavior
  • Poly(methylene blue)
  • Poly(thionine)
  • Electropolymerization