Graphene preparation and process parameters by pre-intercalation assisted electrochemical exfoliation of graphite

Abstract

Among all the preparation methods, electrochemical exfoliation of graphite in neutral aqueous solution to prepare high-quality graphene is a hot research topic due to many advantages, such as high efficiency, environmental friendly, fewer defects, and convenient operation with simple equipment. In this work, the graphene was prepared by pre-intercalation assisted electrochemical exfoliation of graphite foil, in which one pre-intercalation stage was performed at the low voltage to moderately enlarge the interlayer distance of graphite foil, and then graphite electrode was electrochemically exfoliated to produce graphene nanosheets in an aqueous inorganic salt solution of (NH4)2SO4. Through comparing two pretreatment methods of graphite foil (pre-expansion with liquid nitrogen and pre-intercalation by electrochemical intercalation), the electrochemical pre-intercalation process was confirmed to avoid the serious loss of the graphite electrode during the liquid nitrogen pretreatment and facilitate electrochemical exfoliation. Meanwhile, the optimum parameters of pre-intercalation were determined. Subsequently, the effect of applied voltage on the quality of obtained graphene (such as the number of layers, defects, size, composition) during the exfoliation stage was investigated systematically, and especially the effect of applied voltage on the quality and yield of graphene was discussed in detail. The graphene nanosheets with a small number of layers (60% is less than 5 layers) were obtained through two stages of electrochemical pre-intercalation and exfoliation. The structure, morphology, and composition of the graphene were analyzed by using the XRD, SEM, TEM, AFM, and XPS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Zhang YB, Tan YW, Stormer HL, Kim P (2005) Nature 438(7065):201–204

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Physical Review Letters 98(20):206805

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigoriera IV, Firsor AA (2004) Science 306(5696):666–669

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Communications 149:351–355

    Article  CAS  Google Scholar 

  5. 5.

    Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrahan D, Miao F, Lan CN (2008) Nano Letters 8(3):902–907

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320(5881):1308–1308

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Wang Q, Li XF, He XN, Cao LY, Cao GQ, Xu HJ, Hu JH, Shao GS (2020) Journal of Power Sources 455:227988

    CAS  Article  Google Scholar 

  8. 8.

    Xu HJ, Xuan MJ, Xiao WD, Shen YL, Li ZZ, Wang Z, Hu JH, Shao GS (2019) ACS Applied Energy Materials 2(9):6288–6294

    CAS  Article  Google Scholar 

  9. 9.

    Liu CD, Cao GQ, Wu ZH, Hu JH, Wang HY, Shao GS (2019) ACS Applied Materials & Interfaces 11(35):31991–31996

    CAS  Article  Google Scholar 

  10. 10.

    Edwards RS, Coleman KS (2013) Nanoscale 5(1):38–51

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Coros M, Pogacean F, Magerusan L, Socaci C, Pruneanu S (2019) Frontiers of Materials Science 13(1):23–32

    Article  Google Scholar 

  12. 12.

    Liu W, Li H, Xu C, Khatami Y, Banerjee K (2011) Carbon 49(13):4122–4130

    CAS  Article  Google Scholar 

  13. 13.

    Sutter E, Albrecht P, Camino FE, Sutter P (2010) Carbon 48(15):4414–4420

    CAS  Article  Google Scholar 

  14. 14.

    Liu JB, Li PJ, Chen YF, Wang ZG, Qi F, He JR, Zheng BJ, Zhou JH, Zhang WL, Gu L, Li YR (2015) Scientific Reports 5(1):15285

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Wang ZG, Chen YF, Li PJ, Zhou JH, He JR, Zhang WL, Guo Z, Li YR, Dong MD (2016) RSC Advances 6(95):92682–92687

    CAS  Article  Google Scholar 

  16. 16.

    Kondo D, Yagi K, Sato M, Nihei M, Awano Y, Sato S, Yokoyama N (2011) Chemical Physics Letters 514(4-6):294–300

    CAS  Article  Google Scholar 

  17. 17.

    Chithaiah P, Raju MM, Kulkami GU, Rao CNR (2020) Beilsten Journal of Nanotechnology 11:68–75

    CAS  Article  Google Scholar 

  18. 18.

    Mazanek V, Pavlikova L, Marvan P, Plutnar J, Pumera M, Sofer Z (2019) Applied Materials Today 15:343–349

    Article  Google Scholar 

  19. 19.

    Sarno M, Cosa M (2018) Journal of Physics and Chemistry of Solids 120:241–249

    CAS  Article  Google Scholar 

  20. 20.

    Wang ZG, Li PJ, Chen YF, He JR, Zheng BJ, Liu JB, Qi F (2014) Materials Letters 116:416–419

    CAS  Article  Google Scholar 

  21. 21.

    Wu LQ, Li WW, Li P, Liao ST, Qiu SQ, Chen ML, Guo YF, Li Q, Zhu C, Liu LW (2013) Small 10:1421–1429

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lee CY, Mitchell DRG, Molino P, Fahy A, Wallace GG (2019) Applied Materials Today 15:290–296

    Article  Google Scholar 

  23. 23.

    Zhang Y, Xu YL (2019) Advanced Functional Materials 29(37):1902171

    Article  CAS  Google Scholar 

  24. 24.

    Yang S, Lohe MR, Mullen K, Feng XL (2016a) Advanced Materials 28(29):6213–6221

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA, Hussain MA (2013) Carbon 54:1–21

    CAS  Article  Google Scholar 

  26. 26.

    Vasquez-Sandoval D, Pavez J, Carlesi C, Aracena A (2018) Fullerenes Nanotubes and Carbon Nanostructures 26(2):123–129

    Article  Google Scholar 

  27. 27.

    M K PK, Shanthini S, Srivastava C (2015) Rsc Advance 5:53865–53869

    CAS  Article  Google Scholar 

  28. 28.

    Chen DH, Wang F, Li YJ, Wang WW, Huang TX, Li JF, Novoselov KS, Tian ZQ, Zhan DP (2019) Chemical Communications 55(23):3379–3382

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Coros M, Pogacean F, Rosu MC, Socaci C, Borodi G, Magerusan L, Biris AR, Pruneanu S (2016a) Rsc Advances 6(4):2651–2661

    CAS  Article  Google Scholar 

  30. 30.

    Parvez K, Wu ZS, Li RG, Liu XJ, Graf R, Feng XL, Mullen K (2014a) Journal of the American Chemical Society 136(16):6083–6091

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Ambrosi A, Pumera M (2015) Chemistry A European Journal 22:153–159

    Article  CAS  Google Scholar 

  32. 32.

    Zhou F, Tian LJ, Gao L, Wu ZS (2020) CIESC Journal 71:2724–2734

    Google Scholar 

  33. 33.

    Yang S, Bruller S, Wu ZS, Liu ZY, Parvez K, Dong R, Richard F, Samori P, Feng XL, Mullen K (2015) Journal of the American Chemical Society 137(43):13927–13932

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Wu PW, He J, Chen LL, Wu YC, Li HP, Zhu HY, Li HM, Zhu WS (2018) Journal of Energy Chemistry 27(5):1509–1515

    Article  Google Scholar 

  35. 35.

    Gong Y, Ping YJ, Li DL, Luo CZ, Ruan XF, Fu Q, Pan CX (2017) Applied Surface Science 397:213–219

    CAS  Article  Google Scholar 

  36. 36.

    Munuera JM, Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2017) Carbon 115:625–628

    CAS  Article  Google Scholar 

  37. 37.

    Gu WT, Zhang W, Li XM, Zhu HW, Wei JQ, Li Z, Shu QK, Wang C, Wang KL, Shen WC, Kang FY, Wu DH (2009) Journal of Materials Chemistry 19(21):3367–3369

    CAS  Article  Google Scholar 

  38. 38.

    Li XL, Wang XR, Zhang L, Lee SW, Dai HJ (2008b) Science 319(5867):1229–1232

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, Dai HJ (2008a) Nature Nanotechnology 3(9):538–542

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Lu WB, Liu S, Qin XY, Wang L, Tian JQ, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Journal of Materials Chemistry 22(18):8775–8777

    CAS  Article  Google Scholar 

  41. 41.

    Shan K, Yi ZZ, Yin XT, Cui LR, Dastan D, Carmestani H, Alamgir FM (2021) Journal of Alloys and Compounds 855:157465

    CAS  Article  Google Scholar 

  42. 42.

    Yu QK, Jauregui LA, Wu W, Colby R, Tian J, Su ZH, Cao HL, Liu ZH, Pandey D, Wei DG, Chung TF, Peng P, Guisinger NP, Stach EA, Bao JM, Pei SS, Chen YP (2011) Nature Materials 10(6):443–449

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Physics Reports 473(5-6):51–87

    CAS  Article  Google Scholar 

  44. 44.

    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Physical Review Letters 97(18):187401

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Nano Letters 7(2):238–242

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Shi PC, Guo JP, Liang X, Cheng S, Zhang H, Wang Y, Chen CH, Xiang HF (2018) Caron 126:507–513

    CAS  Google Scholar 

  47. 47.

    Esfandiar A, Akhavan O, Irajizadab A (2011) Journal of Materials Chemistry 21(29):10907–10914

    CAS  Article  Google Scholar 

  48. 48.

    Wang H, Wei C, Zhu KY, Zhang Y, Gong CH, Guo JH, Zhang JW, Yu LG, Zhang JG (2017) ACS Applied Materials & Interfaces 9(39):34456–34466

    CAS  Article  Google Scholar 

  49. 49.

    Hou YG, Lv SH, Liu LP, Liu X (2020) Ceramics International 46(2):2392–2402

    CAS  Article  Google Scholar 

  50. 50.

    Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM (2010) Carbon 48(15):4466–4474

    CAS  Article  Google Scholar 

  51. 51.

    Shruthi G, Baishali G, Radhakrishna V, Verma P (2020) Graphene Technology 5(1-2):19–25

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongli Suo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, J., Zhang, T. & Suo, H. Graphene preparation and process parameters by pre-intercalation assisted electrochemical exfoliation of graphite. J Solid State Electrochem (2021). https://doi.org/10.1007/s10008-021-04899-w

Download citation

Keywords

  • Pre-intercalation
  • Graphene
  • Electrochemical exfoliation
  • Voltages
  • Synthesis