Carbon scaffold VPO4 as an anode for lithium- and sodium-ion batteries

Abstract

In order to eliminate the short fall due to PO4 group results in an intrinsic conductivity of the material, an attempt has been made to prepare carbon-coated VPO4/C via the sol-gel method as an anode in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The as-prepared materials well wrapped with carbon, the interaction of carbon offers an efficient pathway for the conduction of carrier electrons and ions (Li+/Na+) to utilize almost the entire power of active material. This material exhibits noteworthy performances in LIBs/SIBs, by delivering an initial discharge capacity of 989/536 mAh g−1 at current density 100 mA g−1 with a capacity retention of 73/52% for the cell cycled up to 100 times.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bobnar J, Lozinšek M, Kapun G, Njel C, Dedryvère R, Genorio B, Dominko R (2018) Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Sci Rep 8(1):5819

    Article  Google Scholar 

  2. 2.

    Kim YK, Kim Y, Bae J, Ahn H, Noh Y, Han H, Kim WB (2020) Implanting a preferential solid electrolyte interphase layer over anode electrode of lithium ion batteries for highly enhanced Li+ diffusion properties. J Energy Chem 48:285–292

    Article  Google Scholar 

  3. 3.

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y-S, Maier J, Yu Y (2018) Multi-electron reaction materials for sodium-based batteries. Mater Today 21(9):960–973

    CAS  Article  Google Scholar 

  4. 4.

    Wu Y, Yu Y (2019) 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Mater 16:323–343

  5. 5.

    Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L (2017) Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116:686–694

    CAS  Article  Google Scholar 

  6. 6.

    Li F, Zhou Z (2018) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14(6):1702961

    Article  Google Scholar 

  7. 7.

    Liu D, Zj L, Li X, Xie W, Wang Q, Liu Q, Fu Y, He D (2017) Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 13(45):1702000

    Article  Google Scholar 

  8. 8.

    Mei J, Liao T, Sun Z (2018) Two-dimensional metal oxide nanosheets for rechargeable batteries. J Energy Chem 27(1):117–127

    Article  Google Scholar 

  9. 9.

    Zhang X, Wang B, Wang G, Liu X, Wang H (2017) A scalable approach to fabricate metal sulfides/graphene/carbon nanotubes composites with superior electrochemical performances for lithium and sodium ion batteries. Electrochim Acta 258:764–772

    CAS  Article  Google Scholar 

  10. 10.

    Partheeban T, Kesavan T, Jithin A, Dharaneshwar S, Sasidharan M (2020) Melamine-templated TiO2 nanoparticles as anode with high capacity and cycling stability for lithium-ion batteries. J Solid State Electrochem:1–8

  11. 11.

    L-b T, Xiao B, C-s A, Li H, He Z-j, Zheng J-c (2018) VPO4@C/graphene microsphere as a potential anode material for lithium-ion batteries. Ceram Int 44(12):14432–14438

    Article  Google Scholar 

  12. 12.

    Wang Z, Gao L, Chen S, Zhang L, Yang X (2020) V2O5/rGO arrays as potential anode materials for high performance sodium ion batteries. J Solid State Electrochem:1–9

  13. 13.

    Hu L, Zheng S, Cheng S, Chen Z, Huang B, Liu Q, Chen Q (2019) Micro/nano-structured Ag coated VPO4/C as a high-performance anode material for lithium-ion batteries. Mater Lett 246:40–44

    CAS  Article  Google Scholar 

  14. 14.

    Zhao D, Meng T, Qin J, Wang W, Yin Z, Cao M (2017) Rational construction of multivoids-assembled hybrid nanospheres based on VPO4 encapsulated in porous carbon with superior lithium storage performance. ACS Appl Mater Interfaces 9(2):1437–1445

    CAS  Article  Google Scholar 

  15. 15.

    Liang X, Ou X, Dai H, Zheng F, Pan Q, Liu P, Xiong X, Liu M, Yang C (2017) Exploration of VPO4 as a new anode material for sodium-ion batteries. Chem Commun 53(94):12696–12699

    CAS  Article  Google Scholar 

  16. 16.

    Guo D, Yang M, Li Y, Xue Y, Liu G, Wu N, Kim J-K, Liu X (2020) Hydrogel-derived VPO4/porous carbon framework for enhanced lithium and sodium storage. Nanoscale 12(6):3812–3819

    CAS  Article  Google Scholar 

  17. 17.

    Koyano G, Okuhara T, Misono M (1995) Redox processes of surface of vanadyl pyrophosphate in relation to selective oxidation of n-butane. Catal Lett 32(1):205–213

    CAS  Article  Google Scholar 

  18. 18.

    Källquist I, Martin J-F, Naylor AJ, Baur C, Fichtner M, Colin J-F, Brandell D, Edström K, Hahlin M (2020) Influence of electrolyte additives on the degradation of Li2VO2F li-rich cathodes. J Phys Chem C 124(24):12956–12967

    Article  Google Scholar 

  19. 19.

    Sun J, Sun Y, Gai L, Jiang H, Tian Y (2016) Carbon-coated mesoporous LiTi2(PO4)3 nanocrystals with superior performance for lithium-ion batteries. Electrochim Acta 200:66–74

    CAS  Article  Google Scholar 

  20. 20.

    Long D, Dou H, Rao X, Chen Z, Zhang Y (2019) Z-scheme Ag3PO4/g-C3N4 nanocomposites for robust cocatalyst-free photocatalytic H2 evolution under visible light irradiation. Catal Lett 149(5):1154–1166

    CAS  Article  Google Scholar 

  21. 21.

    Liao J, Hu Q, Mu J, He X, Wang S, Jiemin D, Chen C (2019) In situ carbon coated flower-like VPO4 as an anode material for potassium-ion batteries. Chem Commun 55(92):13916–13919

    CAS  Article  Google Scholar 

  22. 22.

    Li L, Xu Y, Sun X, He S, Li L (2018) High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na3V2(PO4)2F3 nanoparticles. Chem Eng J 331:712–719

    CAS  Article  Google Scholar 

  23. 23.

    Wang C, Luo F, Lu H, Liu B, Chu G, Quan B, Li J, Gu C, Li H, Chen L (2017) Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology. Nanoscale 9(44):17241–17247

    CAS  Article  Google Scholar 

  24. 24.

    Shi Y, Wan J, Li J-Y, Hu X-C, Lang S-Y, Shen Z-Z, Li G, Yan H-J, Jiang K-C, Guo Y-G, Wen R, Wan L-J (2019) Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. Nano Energy 61:304–310

    CAS  Article  Google Scholar 

  25. 25.

    Hu L, Zheng S, Chen Z, Huang B, Yang J, Chen Q (2018) 3D graphene modified sphere-like VPO4/C as a high-performance anode material for lithium-ion batteries. Electrochim Acta 284:609–617

    CAS  Article  Google Scholar 

  26. 26.

    Zhang Y, Zhang XJ, Tang Q, Wu DH, Zhou Z (2012) Core–shell VPO4/C anode materials for Li ion batteries: computational investigation and sol–gel synthesis. J Alloys Compd 522:167–171

    CAS  Article  Google Scholar 

  27. 27.

    Lu W, Cong L, Liu Y, Liu J, Mauger A, Julien CM, Sun L, Xie H (2020) Pseudocapacitance controlled fast-charging and long-life lithium ion battery achieved via a 3D mutually embedded VPO4/rGO electrode. J Alloys Compd 812:152135

    CAS  Article  Google Scholar 

  28. 28.

    Nan X, Liu C, Wang K, Ma W, Zhang C, Fu H, Li Z, Cao G (2016) Amorphous VPO4/C with the enhanced performances as an anode for lithium ion batteries. J Materiomics 2(4):350–357

    Article  Google Scholar 

  29. 29.

    Zhang S-W, Lv W, Luo C, You C-H, Zhang J, Pan Z-Z, Kang F-Y, Yang Q-H (2016) Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater 3:18–23

  30. 30.

    Qin J, Zhao N, Shi C, Liu E, He F, Ma L, Li Q, Li J, He C (2017) Sandwiched C@SnO2@C hollow nanostructures as an ultralong-life span high-rate anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 5(22):10946–10956

    CAS  Article  Google Scholar 

  31. 31.

    Yan J, Zhang J-H, Qi J-J, Li L, Luo H-W, Cao Y, Zhang Y, Ding Y-L, Wang L-Z (2020) Honeycomb-like amorphous VPO4/C spheres with improved sodium storage performance as anode materials for sodium-ion batteries. Ionics 26(7):3669–3676

    CAS  Article  Google Scholar 

Download references

Acknowledgments

All the authors from Alagappa University acknowledge the financial support by DST-SERB, New Delhi under the Physical sciences, grant sanctioned vide EMR/2016/006302. All the authors acknowledge for the financial support by BSR of University Grants Commission (UGC), New Delhi, India, PURSE and FIST schemes of Department of Science and Technology (DST), New Delhi, India and Ministry of Human Resource Development RUSA- Phase 2.0 grant sanctioned to Alagappa University, vide Lt.No.F-24-51/2014 U Policy (TN Multi Gen), Dept. of Education, Government of India.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. Subadevi or M. Sivakumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(13.2 kb DOCX)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diwakar, K., Rajkumar, P., Subadevi, R. et al. Carbon scaffold VPO4 as an anode for lithium- and sodium-ion batteries. J Solid State Electrochem (2021). https://doi.org/10.1007/s10008-020-04893-8

Download citation

Keywords

  • VPO4
  • Anode
  • LIBs
  • SIBs
  • Vanadium