Skip to main content

Advertisement

Log in

Development of MoSe2/PANI composite nanofibers as an alternative to Pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a simple hydrothermally prepared molybdenum diselenide (MoSe2) was mixed with polyaniline (PANI) nanofibers at 1:1 Wt% in deionized water by using an ultrasonicator for few minutes and then filtered and dried at 100 °C to get MoSe2/PANI composite nanofibers to use as a counter electrode (CE) for high-performance dye-sensitized solar cell (DSSC). The X-ray diffractometer (XRD) result confirms the formation of MoSe2/PANI composite nanofibers with high purity, which is consistent with the result of Raman spectrum. Field emission scanning electron microscopy (FE-SEM) studies confirm the decoration of MoSe2 nanoparticles onto the surface of polyaniline nanofibers and their chemical composition was calculated by energy-dispersive X-ray spectroscopy (EDX). The cyclic voltammetry (CV) study shows that MoSe2/PANI composite nanofibers as CE have good electrocatalytic activity, fast electron transport rate with increased current flow than the individual MoSe2 and PANI CEs. From AC-impedance analysis, it is cleared that MoSe2/PANI composite nanofibers based CE have lower charge-transfer resistance (Rct) with higher electrocatalytic behavior for I3/I redox pair than the pure MoSe2, PANI, and Pt-based CEs. Moreover, MoSe2/PANI composite nanofibers based DSSC show higher cell efficiency of 8.04% than the pure MoSe2, PANI, and Pt-based DSSCs. It revealed that MoSe2/PANI CE could be used as a promising candidate for DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Physics 2 Lett 45(24–28):23–26

    Google Scholar 

  2. Zhang S, Yang X, Numata Y, Han L (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6(5):1443–1464

    Google Scholar 

  3. Lee KS, Lee HK, Wang DH, Park NG, Lee JY, Park OO, Park JH (2010) Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chem Commun 46(25):4505–4507

    CAS  Google Scholar 

  4. Vijayakumar P, Pandian MS, Mukhopadhyay S, Ramasamy P (2015) Synthesis and characterizations of large surface tungsten oxide nanoparticles as a novel counter electrode for dye-sensitized solar cell. J Sol-Gel Sci Technol 75(3):487–494

    CAS  Google Scholar 

  5. Xia J, Masaki N, Jiang K, Yanagida S (2007) The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. J Mater Chem 17(27):2845–2850

    CAS  Google Scholar 

  6. Jun Zhang ZY, Hried T, Li X, Guo W, Wang L, Shi X, Haiquan S (2010) Nanostructured polyaniline counter electrode for dye-sensitized solar cells: fabrication and investigation of its electrochemical formation mechanism. Electrochim Acta 55(11):3664–3668

    Google Scholar 

  7. Su B, Tong Y, Bai J, Lei Z, Wang K, Mu H, Dong N (2007) Acid doped polyaniline nanofibers synthesized by interfacial polymerization. Indian J Chem Sect A Inorganic Phys Theor Anal Chem 46(4):595–599

    Google Scholar 

  8. Rafeeq SN, Khalaf WZ (2015) Preparation, characterization and electrical conductivity of doped polyaniline with (HCL and P - TSA). Eng Tech J 33(7):1220–1231

    Google Scholar 

  9. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875

    CAS  Google Scholar 

  10. Kavitha B, Kumar KS, Narsimlu N (2013) Synthesis and characterization of polyaniline nano-fibers. Indian J Pure Appl Phys 51(03):207–209

    CAS  Google Scholar 

  11. Ramakrishnan S (1997) Conducting polymers from a laboratory curiosity to the market place. Reson J Sci Educ 2(11):48–58

    Google Scholar 

  12. Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) One-pot synthesis of polyaniline - metal nanocomposites. Chem Mater 17(24):5941–5944

    CAS  Google Scholar 

  13. Naseri M, Fotouhi L, Ehsani A (2018) Recent progress in the development of conducting polymer-based nanocomposites for electrochemical biosensors applications: a mini-review. Chem Rec 18(6):599–618

    PubMed  CAS  Google Scholar 

  14. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51(14):1487–1500

    CAS  Google Scholar 

  15. Ghani S, Sharif R, Shahzadi S, Zafar N, Anwar AW, Ashraf A, Zaidi AA, Kamboh AH, Bashir S (2015) Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells. J Mater Sci 50(3):1469–1477

    CAS  Google Scholar 

  16. Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J (2013) Preparation of MoS2 -coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9(20):3433–3438

    PubMed  CAS  Google Scholar 

  17. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    PubMed  CAS  Google Scholar 

  18. Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404

    PubMed  CAS  Google Scholar 

  19. Heda NL, Dashora A, Marwal A, Sharma Y, Srivastava SK, Ahmed G, Jain R, Ahuja BL (2010) Electronic properties and Compton profiles of molybdenum dichalcogenides. J Phys Chem Solids 71(3):187–193

    CAS  Google Scholar 

  20. Ahuja U, Joshi R, Kothari DC, Tiwari H, Venugopalan K (2016) Optical response of mixed molybdenum dichalcogenides for solar cell applications using the modified Becke-Johnson potential. J Phys Sci 71(3):213–224

    CAS  Google Scholar 

  21. Larentis S, Fallahazad B, Tutuc E (2012) Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett 101(22):1–4

    Google Scholar 

  22. Lee LT, He J, Wang B, Ma Y, Wong KY, Li Q, Xiao X, Chen T (2014) Few-layer MoSe2 possessing high catalytic activity towards iodide/tri-iodide redox shuttles. Sci Rep 4(1):1–7

    CAS  Google Scholar 

  23. Jia J, Wu J, Dong J, Tu Y, Lan Z, Fan L, Wei Y (2016) High-performance molybdenum diselenide electrodes used in dye-sensitized solar cells and supercapacitors. IEEE J Photovoltaics 6(5):1196–1202

    Google Scholar 

  24. Chen H, Xie Y, Cui H, Zhao W, Zhu X, Wang Y, Lü X, Huang F (2014) In situ growth of a MoSe2/Mo counter electrode for high efficiency dye-sensitized solar cells. Chem Commun 50(34):4475–4477

    CAS  Google Scholar 

  25. Pang Z, Chen Z, Wen R, Zhao Y, Wei A, Liu J, Tao L, Luo D, Yang Y, Xiao Y, Xiao Z, Li J (2017) Colloidally synthesized MoSe2 nano-flowers anchored on three-dimensional porous reduced graphene oxide thin films as advanced counter electrode for dye-sensitized solar cells. J Mater Sci Mater Electron 28(20):15418–15422

    CAS  Google Scholar 

  26. Saadi FH, Carim AI, Velazquez JM, Baricuatro JH, McCrory CCL, Soriaga MP, Lewis NS (2014) Operando synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction. ACS Catal 4(9):2866–2873

    CAS  Google Scholar 

  27. Abderrahmane A, Ko PJ, Thu TV, Ishizawa S, Takamura T, A. Sandhu A (2014) High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 25(36), 365202

  28. Mao S, Wen Z, Ci S, Guo X, Ostrikov K, Chen J (2014) Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11(4):414–419

    PubMed  Google Scholar 

  29. Xie D, Tang W, Wang Y, Xia X, Zhong Y, Zhou D, Wang D, Wang X, Tu J (2016) Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res 9(6):1618–1629

    CAS  Google Scholar 

  30. Liu Z, Li N, Zhao H, Du Y (2015) Colloidally synthesized MoSe2/graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. J Mater Chem A 3(39):19706–19710

    CAS  Google Scholar 

  31. Patel HS, Rathod JR, Patel KD, Pathak VM, Srivastava R (2011) Use of polymer in MoSe2 solar cells. AIP Conf Proc 1393(1):85–86

    CAS  Google Scholar 

  32. He B, Zhang X, Zhang H, Li J, Meng Q, Tang Q (2017) Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells. Sol Energy 147:470–478

    CAS  Google Scholar 

  33. Huang YJ, Fan MS, Li CT, Lee CP, Chen TY, Vittal R, Ho KC (2016) MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells. Electrochim Acta 211:794–803

    CAS  Google Scholar 

  34. Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic-organic nanohybrid of MoS2-PANI for advanced photocatalytic application. Int Nano Lett 9(2):127–139

    CAS  Google Scholar 

  35. Subramania A, Lakshmi Devi S (2008) Polyaniline nanofibers by surfactant-assisted dilute polymerization for supercapacitor applications. Polym Adv Technol 19(7):725–727

    CAS  Google Scholar 

  36. Yang X, Yang F, Xue M, Zhang X, Luo G (2015) Hydrothermal synthesis and tribological properties of MoSe2 nanoflowers. Micro Nano Lett 10(7):339–342

    Google Scholar 

  37. Zhang Z, Yang X, Fu Y, Du K (2015) Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J Power Sources 296:2–9

    CAS  Google Scholar 

  38. Zhang L, Wang T, Sun L, Sun Y, Hu T, Xu K, Ma F (2017) Hydrothermal synthesis of 3D hierarchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction. J Mater Chem A 5(37):19752–19759

    CAS  Google Scholar 

  39. Shubha LN, Kalpana M, Madhusudana Rao P (2016) Synthesis, characterization by AC conduction and antibacterial properties of polyaniline fibers. Der Pharm Lett 8(1):214–219

    CAS  Google Scholar 

  40. Rahy A, Yang DJ (2008) Synthesis of highly conductive polyaniline nanofibers. Mater Lett 62(28):4311–4314

    CAS  Google Scholar 

  41. Tang H, Dou K, Kaun CC, Kuang Q, Yang S (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2(2):360–364

    CAS  Google Scholar 

  42. Tran XT, Poorahong S, Siaj M (2017) One-pot hydrothermal synthesis and selective etching method of a porous MoSe2 sand rose-like structure for electrocatalytic hydrogen evolution reaction. RSC Adv 7(82):52345–52351

    CAS  Google Scholar 

  43. Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117(1–2):75–90

    CAS  Google Scholar 

  44. Tongay S, Zhou J, Ataca C, Lo K, Matthews TS, Li J, Grossman JC, Wu J (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12(11):5576–5580

    PubMed  CAS  Google Scholar 

  45. Lai Y, Chen W, Zhang Z, Gan Y, Yang X, Li J (2016) Two-dimensional graphene-like MoSe2 nanosheets anchored on hollow carbon nanofibers as a cathode catalyst for rechargeable Li-O2 batteries. RSC Adv 6(24):19843–19847

    CAS  Google Scholar 

  46. Veerasubramani GK, Krishnamoorthy K, Radhakrishnan S, Kim NJ, Kim SJ (2016) In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications. J Ind Eng Chem 36:163–168

    CAS  Google Scholar 

  47. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta 122:28–38

    Google Scholar 

  48. Tagowska M, Pałys B, Jackowska K (2004) Polyaniline nanotubules - anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synth Met 142(1–3):223–229

    CAS  Google Scholar 

  49. Jang JS, Ham DJ, Ramasamy E, Lee J, Lee JS (2010) Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem Commun 46(45):8600–8602

    CAS  Google Scholar 

  50. Saranya K, Rameez M, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells - an overview. Eur Polym J 66:207–227

    CAS  Google Scholar 

  51. Saranya K, Subramania A, Sivasankar N, Mallick S (2016) Electrospun TiC embedded CNFs as a low cost platinum-free counter electrode for dye-sensitized solar cell. Mater Res Bull 75:83–90

    CAS  Google Scholar 

  52. Zhang LXD, Li HB, Chen S, Sun Z, Yin XJ (2011) Graphene based counter electrode for dye-sensitized solar cell. Carbon 49(15):5382–5388

    CAS  Google Scholar 

  53. Murugadoss V, Panneerselvam P, Yan C, Guo Z, Angaiah S (2019) A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochim Acta 312:157–167

    CAS  Google Scholar 

  54. Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) Effect of 1-butyl-3-methylimidazolium iodide containing electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane electrolyte on the photovoltaic performance of dye-sensitized solar cells. J Appl Polym Sci 132(23):1–7

    Google Scholar 

  55. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10(10):1555–1558

    CAS  Google Scholar 

  56. Karthick SN, Hemalatha KV, Raj CJ, Subramania A, Kim H (2012) Preparation of TiO2 paste using poly ( vinylpyrrolidone ) for dye sensitized solar cells. Thin Solid Films 520(23):7018–7021

    CAS  Google Scholar 

  57. Murugadoss V, Arunachalam S, Elayappan V, Angaiah S (2018) Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics (Kiel) 24(12):4071–4080

    CAS  Google Scholar 

  58. Murugadoss V, Wang N, Tadakamalla S, Wang B, Guo Z, Angaiah S (2017) In situ grown cobalt selenide/graphene nanocomposite counter electrodes for enhanced dye-sensitized solar cell performance. J Mater Chem A 5(28):14583–14594

    CAS  Google Scholar 

  59. Yoon CH, Vittal R, Lee J, Chae WS, Kim KJ (2008) Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochim Acta 53(6):2890–2896

    CAS  Google Scholar 

  60. Elayappan V, Murugadoss V, Angaiah S, Fei Z, Dyson PJ (2015) Development of a conjugated polyaniline incorporated electrospun poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane electrolyte for high performance dye-sensitized solar cells. J Appl Polym Sci 132(45):1–8

    Google Scholar 

  61. Dong J, Wu J, Jia J, Hu L, Dai S (2015) Cobalt/molybdenum ternary hybrid with hierarchical architecture used as high efficient counter electrode for dye-sensitized solar cells. Sol Energy 122:326–333

    CAS  Google Scholar 

Download references

Funding

Dr.AS gratefully acknowledge the Council of Science and Industrial Research (CSIR) New Delhi (Ref. No. 01 (2810)14/EMR-II, dt. 26/04/2017) for their financial support. The authors also gratefully acknowledge the Central Instrumentation Facility (CIF), Pondicherry University for providing the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramania Angaiah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowbakkiyavathi, E.S., Murugadoss, V., Sittaramane, R. et al. Development of MoSe2/PANI composite nanofibers as an alternative to Pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell. J Solid State Electrochem 24, 2289–2300 (2020). https://doi.org/10.1007/s10008-020-04728-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04728-6

Keywords

Navigation