Modeling of lithium-ion batteries is becoming viral: where to go?

Abstract

We briefly summarize the most popular theoretical/computational techniques being used to model lithium-ion batteries and suggest some future tasks/challenges in the area.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Barré A, Deguilhem B, Grolleau S, Gérard M, Suard V, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689

    Article  Google Scholar 

  2. 2.

    Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y, Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y (2019) A critical review of battery thermal performance and liquid based battery thermal management. Ener Convers and Manage 182:262–281

    Article  Google Scholar 

  3. 3.

    Deng J, Bae C, Marcicki J, Masias A, Miller T (2018) Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat Energy 3(4):261–266

    Article  Google Scholar 

  4. 4.

    Kermani G, Sahraei E (2017) Review: characterization and modeling of the mechanical properties of Lithium-ion batteries. Energies 10(11):1730

    Article  Google Scholar 

  5. 5.

    Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag 150:304–330

    CAS  Article  Google Scholar 

  6. 6.

    Wang Q, Jiang B, Li B, Yan Y (2016) A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew Sust Energ Rev 64:106–128

    Article  Google Scholar 

  7. 7.

    Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F (2016) Safety focused modeling of lithium-ion batteries: a review. J Power Sources 306:178–192

    CAS  Article  Google Scholar 

  8. 8.

    Zhu J, Wierzbicki T, Li W (2018) A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 378:153–168

    CAS  Article  Google Scholar 

  9. 9.

    Gavilán-Arriazu EM, Pinto OA, de López Mishima BA, Leiva EPM, Oviedo OA (2018) Grand canonical Monte Carlo study of Li intercalation into graphite. J Electrochem Soc 165(10):A2019–A2025

    Article  Google Scholar 

  10. 10.

    Perassi EM, Leiva EPM (2016) A theoretical model to determine intercalation entropy and enthalpy: application to lithium/graphite. Electrochem Commun 65:48–52

    CAS  Article  Google Scholar 

  11. 11.

    Gavilán-Arriazu EM, Pinto OA, López de Mishima BA, Barraco DE, Oviedo OA, Leiva EPM (2018) The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system. Electrochem Commun 93:133–137

    Article  Google Scholar 

  12. 12.

    Gavilán-Arriazu EM, Pinto OA, de López Mishima BA, de Barraco Oviedo OA, Leiva EPM (2020) Kinetic Monte Carlo applied to the electrochemical study of the Li-ion graphite system. Electrochim Acta 331:135439

    Article  Google Scholar 

  13. 13.

    Jorn R, Kumar R, Abraham DP, Voth GA (2013) Atomistic modeling of the electrode−electrolyte interface in Li-ion energy storage systems: electrolyte structuring. J Phys Chem C 117(8):3747–3761

    CAS  Article  Google Scholar 

  14. 14.

    Yahia MB, Vergnet J, Saubanère M, Doublet M-L (2019) Unified picture of anionic redox in Li/Na-ion batteries Nat. Mater. 496:496–502

    Google Scholar 

  15. 15.

    Urban A, Seo D-H, Ceder G (2016) Computational understanding of Li-ion batteries. Npf Comput Mater 2(1):16002

    CAS  Article  Google Scholar 

  16. 16.

    Islam MS, Fisher CAJ (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43(1):185–204

    CAS  Article  Google Scholar 

  17. 17.

    Xiao R, Li H, Chen L (2015) High-throughput design and optimization of fast lithium-ion conductors by the combination of bond-valence method and density functional theory. Sci Rep 5(1):14227

    CAS  Article  Google Scholar 

  18. 18.

    Bazant MZ (2013) Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc Chem Res 46(5):1144–1160

    CAS  Article  Google Scholar 

  19. 19.

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B-X (2019) A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources 413:259–283

    CAS  Article  Google Scholar 

  20. 20.

    Grazioli D Magri M Salvadori (2016) A computational modeling of Li-ion batteries. Comput Mech 58: 889–909, 6

  21. 21.

    Thomas KE Newman J Darling R M (2002) Mathematical modeling of lithium batteries, Eds van Schalkwijk W Scrosati B Kluwer Academic/Plenum Publishers

  22. 22.

    Miranda D, Costa CM, Lanceros-Mendez S (2015) Lithium-ion rechargeable batteries: state of the art and future needs of microscopic theoretical models and simulations. J Electroanal Chem 739:97–110

    CAS  Article  Google Scholar 

  23. 23.

    Franco AA, Rucci A, Brandell D, Frayret C, Gaberscek M, Jankowski P, Johansson P (2019) Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? Chem Rev 119(7):4569–4627

    CAS  Article  Google Scholar 

  24. 24.

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R (2016) Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin Phys B 25(1):018212

    Article  Google Scholar 

  25. 25.

    Latz A, Zausch J (2015) Multiscale modeling of lithium-ion batteries: thermal aspects, Beilstein. J Nanotechnol 6:987–1007

    CAS  Google Scholar 

  26. 26.

    Quiroga MA, Xue K-H, Nguyen T-K, Tułodziecki M, Huang H, Franco Alejandro AA (2014) Multiscale model of electrochemical double layers in energy conversion and storage devices. J Electrochem Soc 161(8):E3302–E3310

    CAS  Article  Google Scholar 

  27. 27.

    Wang A, Kadam S, Li H, Shi S, Yue Q (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npf Comput Mater 4:15

    Article  Google Scholar 

  28. 28.

    Exner KS (2018) A short perspective of modeling electrode materials in lithium-ion batteries by the ab initio atomistic thermodynamics approach. J Solid State Electrochem 22(10):3111–3117

    CAS  Article  Google Scholar 

  29. 29.

    Juarez F, Dominguez-Flores F, Goduljan A, Mohammadzadeh L, Quaino Paola Santos E, Schmickler W (2018) Defying Coulomb’s law: a lattice-induced attraction between lithium ions. Carbon 139:808–812

    CAS  Article  Google Scholar 

  30. 30.

    The Materials Project (2020) https://materialsproject.org/

  31. 31.

    Chandesris M, Caliste D, Jamet D, Pochet P (2019) Thermodynamics and related kinetics of staging in intercalation compounds. J Phys Chem C 123(38):23711–23720

    CAS  Article  Google Scholar 

  32. 32.

    Hong Z, Viswanathan V (2018) Phase-field simulations of lithium dendrite growth with open-source software. ACS Energy Lett 3(7):1737–1743

    CAS  Article  Google Scholar 

  33. 33.

    Morzan UN, de Alonso Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, DA SDAE (2018) Spectroscopy in complex environments from QM−MM simulations. Chem Rev 118:4071–4113

    CAS  Article  Google Scholar 

  34. 34.

    Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Accounts 117:185–199

    CAS  Article  Google Scholar 

  35. 35.

    Chen C-H Planella FB O’Regan K Gastol D Widanage WD Kendrick E (2020) Development of experimental techniques for parameterization of multi-scale Lithium-ion battery models. J Electrochem Soc 167:080534

  36. 36.

    Tao B, Yule LC, Daviddi E, Bentley CL, Unwin PR (2019) Correlative electrochemical microscopy of Li-ion (de)intercalation at a series of individual LiMn2O4 particles. Angew Chem Int Ed 58:4606

    CAS  Article  Google Scholar 

  37. 37.

    Jiang D, Jiang Y, Li Z, Liu T, Wo X, Fang Y, Tao N, Wang W, Chen H-Y (2017) Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling. J Am Chem Soc 139:186–192

    CAS  Article  Google Scholar 

  38. 38.

    Hu J, Li W, Duan Y, Cui S, Song X, Liu Y, Zheng Jiaxin Lin Y, Pan F (2017) Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries. Adv Energy Mater 7:1601894

    Article  Google Scholar 

  39. 39.

    Wang F, Yu H-C, Chen M-H, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci GG, Graetz J (2017) Tracking lithium transport and electrochemical reactions in nanoparticles. Nat Commun 3:1201

    Article  Google Scholar 

Download references

Funding

E.P.M.L. thanks grants PIP CONICET 11220150100624CO, PUE/2017 CONICET, FONCYT PICT-2015-1605, and SECyT of the Universidad Nacional de Córdoba. Support by CCAD-UNC and GPGPU Computing Group, Y-TEC, and an IPAC grant from SNCAD-MinCyT, Argentina, are also gratefully appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. P. M. Leiva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leiva, E.P.M. Modeling of lithium-ion batteries is becoming viral: where to go?. J Solid State Electrochem (2020). https://doi.org/10.1007/s10008-020-04703-1

Download citation